A Component Language for
Structured Parallel Programming

Luc Blaser

Computer Systems Institute, ETH Zurich, Switzerland
bl aeser @nf . ethz. ch

Abstract. Current programming languages are still underdevelopetdaron-
struction of well-structured concurrent software systerhgy typically impose
many unnecessary and unacceptable compromises and/or workasloartdsa
multiplicity of different suboptimal concepts. With regardtgect-orientation,
one can identify references, methods and inheritance as sypgrapriate con-
structs.

To overcome this unfavourable situation, we have desigretdrgiemented
a substantially new programming language which integrategereral
component notion. Three fundamental relations govern componeritssin
language: (1) hierarchical composition, (2) symmetric caiores with a dual
concept ofoffered andrequired interfaces and, (3) communication-based inter-
actions. With the use of various examples, the advantate olew component
language is demonstrated in this paper.

1 Motivation

The current trend within the field of software engineeringteadily evolving towards
programming languages which possess an increasing numbdiffafent and
unfortunately, counterproductive concepts. This growimgceptual incoherence
often implicates such high complexity, that it decisivelyits the flexible con-
struction of structured parallel programs. With regardht current most prevalent
object-oriented programming paradigm, we are confcbntéh three fundamental
problems:
* References
References (or pointers) form semantically very weadnstructs for
describing relations between dynamically created olijestances. Arbitrary
interlinking of object instances is therewith promoteddieg to an object
graph of non-hierarchical shdp€lear program structures and general en-
capsulations remain unsupported: any abstraction thatstemf a dynamic
structure of sub-elements is not adequately represerdaabd hierarchically
composed object. Instead, this has to be forcibly mededs a reference-
linked conglomerate of elementary object instances, itaisty an un-
differentiated part in the common overall and flat obgeph. As a con-

! C.AR. Hoare unequivocally criticizes the unstructunegure of references and calls their
introduction in high-level programming languages a step bardsi[17, page 20].

sequence, incautious reference copying may quickly leadndorrect
program dependencies (aliasing problems [16, 4, 11, 8, R2MBteover,
object exchangeability is strongly impacted by dependerafiesutgoing
object references which are unspecified in object ated
* Methods
Methods fail the realization of a true message passiragligen, as they in
fact only constitute procedures (with an implicit refece to the containing
object). An object is not capable of maintaining dritearily long state-full
interaction with multiple clients individually, but can oriypld a client-
specific context during a method invocafiofhe pattern of a method for a
client-specific interaction is however oversimplifietiaving only one
parameterised input followed by one possible output, with géyerdl one
value. Methods additionally obstruct concurrency by blockireginvocator
during their entire execution, instead of running at the rs@ef the actual
containing object.
* Inheritance
The main object-oriented mechanism for type polymorphisnown as
inheritance, enforces a groundless hierarchisation assifatation of object
types at compile-time. Unlike a symmetric polymorphisbjects can not be
represented by multiple, equally important facets, withetificially pre-
ferring some facets as sub-types of others. Inhegtamso unsuitably
combines the two antagonistic concerns of polymorphasid code reuse,
often resulting in mutual imports of different classes.pAc&l object class,
which needs to be inherited from a general class ferpilrpose of type
polymorphism, should not be obligated to also inherit theneral
implementation of the super-class, as the special' dads is naturally more
specific than that of the general cfass
This unfavourable situation demands a total revisidim@fconceptual basis of current
programming languages. We are challenged to design new langudigds base on
a new more powerful paradigm that uniformly enables stredtidynamic, and safe
software development. Clearly, this requires the lilb@madf the language concepts
from the often unreasonable close binding to a coaeneichine model. Instead, there
is a need for real high-level programming languages, whiehstll effectively
implementable on different computer platforms.

In order to achieve this ideal, we have designed anceimggited a substantially
new programming language, which integrates a general highdemponent notion.
Three simple but fundamental relations govern componenthisnlanguage: (1)
hierarchical composition without use of explicit pointély, symmetric connections
with a dual concept dafffered andrequired interfaces and, (3) communication-based
interactions. The newomponent language takes a completely different path in com-

2 Every element of public visibility in the object may be dédeeed as part of the object’s
interface.

® The iteration over a collection stands for a clientiittlial state-full interaction that can not
be accurately expressed with methods (cf. 3.2).

* Clearly, the example of a rectangle and square showscohisadiction: a square is a
geometrical special-case (modelled astaclass) of a rectangle but on the other hand, should
not inherit the general rectangle implementation (withweevariabledength andwidth).

parison to existing component models, architecture deserifgtnguages, and object
structure specification models (see Section 5). As iathav, it provides a fully-
fledged programming language, which only features high-levetepis for the
implementation of components. The component languageeinthe abolishes the
fundamental deficiencies of current programming models andsoafifee following
attractive features:

Hierarchical encapsulation

A component is able to contain any (static or dynarsin)ctures of com-
ponents and program logic of any complexity. The hieraatliyicontained
components and the relations among them are therebyefutlpsulated and
exclusively managed by the surrounding component.

Expressive structural relations

All structures of components are described by semanticah relations,
such that classical references (and pointers) can teelgnabandoned
without loss of expressiveness: each component conitairesvn arbitrary
network of sub-components. This prohibits uncontrollesyam dependen-
cies (such as aliasing problems).

Intrinsic concurrency

Concurrency inherently results from the language model hichwall com-
ponents run fully autonomously and have their own intiresitivities.
Components only interact via bidirectional message conuations (with
non-blocking message sending).

Unrestricted polymorphism

Components can be represented by an arbitrary sedefémdent interfaces,
activating unrestricted symmetric polymorphism in taieparation from
implementation reuse. A new type description ensureséhrect handling
of polymorphic components.

Interoperability

Although the component language is designed for general purfesept
machine-close programming) and common programs are grdiegklop-
able in components, the language also permits safepetebility due to the
guaranteed encapsulation. Terminal components, which deconttin sub-
components, may be just as well implemented in any progirsgmnm
language, such as for the purpose of machine-specifieingpitations.

1.1 Contributions

The contributions of this paper can be summarised lasvil

The presentation of a new programming language witintegriated general
component notion for structured parallel programming.

A comparison of the new language with classical oljpeieintation, showing
the advantage by means of practical examples.

The description of a complete implementation of the inogning language,
comprising compiler and runtime system.

The remainder of the paper is organised as follows; Se2tmesents the concepts of
the new programming language and explains them by meatsstfative examples.

Section 3 shows practical examples of the new languagiec@ampares them with
object-orientation. Section 4 describes the implentiemtaof the programming
language and also gives an experimental evaluation of/shens. Section 5 discusses
related work, which is finally followed by a conclusion.

2 Component Language

The new programming language follows the principle that program forms a
component which may be constructed again from an asgerhbbmponents and so
on. With this paradigm of stepwise refinement, complexesystcan be built with
abstract program elements that hide detailed logic &dngher abstraction level.

A component® constitutes a closed program urhitack box) that encapsulates an
arbitrary assembly of sub-components, together wititime state and behaviour.
Components are only allowed to have external programmdepeies over explicitly
defined interfaces. Amterface represents an external facet of a component and thus
establishes an explicit interaction point between ¢bmponent and its exterior
environment. Each componenffers an arbitrary number of own interfaces and also
requires an arbitrary number of foreign interfaces that bglemother external com-
ponent&

By way of a first example, let us consider a standard hedseh has the external
facets of a residence and a parking space, requiring lacthigty and water supplies
from outside. The house may be described as a compon&d SahdardHouse,
which offers both @&esidence and ParkingSpace interface (see Fig. 1). In addition,
the house requires the foreid@hectricity and Water interfaces from other external
components. Clearly, all interfaces of the componem legual rights, i.e. there is no
artificially preferred interface. With regard to the exden this means that the
characterizations of a residence and parking spaceqagdly important facets of the
house.

INTERFACEResidence (* ... *)
INTERFACE ParkingSpace (* ... *)
INTERFACEElectricity ; (* ... *)
INTERFACE Water; (* ... *)

COMPONENTStandardHouse
OFFERSResidenceParkingSpace
REQUIRESElectricity, Water;

(* implementation *)

END StandardHouse;

ResidencO Electricity

StandardHous

ParkingSpace)) Water

Fig. 1. A component

5 A component here always means a runtime instanceashpanent template.
® A variety of other component definitions can be found in [26peal1].

Arbitrarily manycomponent instances (also simply calledomponents) can be created
from the samecomponent template (also calledcomponent type’). In the example
above, the program describes the component templateh whitin turn be used to
create as many house component instances as needesiddrssible instance of a
house is depicted by the diagram in Fig. 1.
The component language is based upon three fundamental ela¢ioveen com-
ponents:
» Hierarchical composition
Each component can be hierarchically composed, by corgaam arbitrary
assembly of component instances. The contained subecmmts are fully
encapsulated by the surrounding super-component.
+ Interface connections
An arbitrary network of components can be built by @mting the required
interfaces of components to corresponding offered intesfa¢ other com-
ponents. A component only constructs the network aflilscomponents.
« Communication-based interactions
Components can interact via interfaces by message coications. An
individual communication channel is maintained betweenomponent,
which offers an interface, and each component, which bedaterfacé
The component notion is designed to cover any conce&vatapsulated program
unit and to enable higher generality than the classioaiponent abstractions of
objects and modules. For that reason, the general comigosstablish the sole
building units of the language.

2.1 Component Instances

Component instances must always be declared in thergmmogcope of their
containing super-component. The declaration of an insteeguires a description of
the corresponding component type (component templatedrdar to ensure the
correct handling of instances. The concrete compogpatis one possibility for such

a description. For exampliegusel andhouse2 can be declared as two instances of the
SandardHouse component type:

housel, house2: StandardHouse

In many cases, it is however necessary to declarepaoent instances without
statically fixing a specific type. Therefore, as anptpessibility, a component
instance is also declarable in abstract terms, bglgipostulating a set of offered and
required interfaces. The example below shows such an ebsialaration of a
building component instance, with the postulated offered irdesfResidence and
ParkingSpace, and the required interfacEsectricity andWater.

building: ANY(Residence, ParkingSpace | Electricityater)

" A component instance has only one type, i.e. the corterefgate from which it is created.
8 Notably, the communication between components is fully sstriecnand does not entail
"inverse programming" by means of event-orientation.

Using this declaration, the component instance can k@yotomponent type that
fulfils the following requirements:

1. The component typeffers at least the interfaces which are postulated as
offered by the declaration (i.®esidence and ParkingSpace). These inter-
faces are always guaranteed to be provided by the declanegloent
instance.

2. The component typeequires at most the interfaces which are postulated as
required by the declaration (i.Electricity andWater). These interfaces have
to be provided by the environment of the declared compoimstance,
before the component’s offered interfaces can be used.

Applying the rules above, the followingwnHouse component may well be of the
SandardHouse type. Conversely, theldHouse component can not represent a
SandardHouse as no requireétlectricity interface is postulated.

townHouse: ANY(Residence | Electricity, Water, Geltieating);
oldHouse: ANY(Residence | Water)

A static declaration of component instances is neays applicable as in some cases,
the number of component instances may be determinecabniintime. Hence, it is
also possible to declare a dynaroatlection of component instances with the same
type description. Arindex, qualified by a list of comparable data values, thereby
allows the dynamic identification of a component wittlie collection. For example,
the following declaration defines a collection of comgmts of theStandardHouse
type, requiring a street number and name to identifpstance.

house[number: INTEGER, street: TEXT]: StandardHouse

With this declaration, the following component instan(@songst others) may be
accessed.

house[12, "Market Street"] house[3, "First Avenue"] house[100, "Grand Boulevard"]

2.2 Hierarchical Composition

A component can be hierarchically composed, by contaiamgrbitrary static or
dynamic number of sub-components. The sub-componenfslbr encapsulated and
exclusively managed by the surrounding super-component, $iaththe inner
components are completely invisible and inaccessilfigde the super-component.

The program below delineates a hierarchical composititin the example of a
SandardHouse component, which contains a garage and two floors as sub-
components (see Fig. 1). In this language, variabldsleh&rarchical compositions
by representingseparate containers, in which a component instance with a
compatible type can be stored.

COMPONENTStandardHouseOFFER SResidenceParkingSpaceREQUIRESElectricity , Water;
VARIABLE garage StandardGaraggroundFloor, firstFloor : ANY(Rooms | Electricity, Water);
BEGIN
NEW(garage); NEW(groundFloor, Floor); NEW(firktbr, Floor)

END StandardHouse;

As a variable is empty by default, a component insthaseto be created within it by
the NEW-statement. If an abstract type descriptiatedared for the variable (ANY-
construct), the component type has to be explicitly spelcés second parameter (see
the two last NEW-statements in the example above).

StandardHouse
(Internal Implementation) ;

Residence , ‘ E|eCtric§ty
Oo— ParkiﬁgSpa :’ . k - Wata : Electricity
ParkingSpacsg z ‘ , ! z z
O— . __{ Electricity Wate

Wate

Fig. 2. A hierarchical composition of components

Naturally, a variable is also capable of storing aadyic collection of component
instances:

VARIABLE room[number: INTEGER]: HotelRoom;
FORi:=1TO N DO NEW(room([i]) END

Variables are only defined locally in a program scaqoeh that they directly imply a
hierarchical lifetime dependency between the surroundiataice and the internal
components.

2.3 Component Networks

Components systematically decompose programs into segpdrgfical parts, with
precisely defined dependencies in the form of offered metpiired interfaces.
Networks of component instances can be built by explicitynecting each required
interface to one with an equal name which is offered rogtreer component. The
following example of a small city demonstrates the goietibn of such a network of
component instances. By means of the CONNECT-statenttee requiredWater
interface ofhousel is for instance connected to the offel&dter interface ofriverl.
(The offered interface is thereby implicitly defined Hyetfirst argument.) The
resulting component network is visualised in Fig. 3.

COMPONENTHYydroelectricPowerPlant OFFERSElectricity REQUIRESWater; (* ... *)
COMPONENTRiver OFFERSWater; (* ... *)

VARIABLE
housel, house2: StandardHouse;
powerPlant: HydroelectricPowerPlant;
riverl, river2: River;

BEGIN
NEW!(housel); NEW(house2); NEW(powerPlant); NEW&rL); NEW(river2);
CONNECT (Water(housel), riverl); CONNECT (Electsi¢housel), powerPlant);
CONNECT (Water(house2), river2); CONNECT (Electsi¢house?), powerPlant);
CONNECT (Water(powerPlant), river2)

housel

riverl

ResidencQ
ParkingSpacQO StandardHouse

house2
Residenc

ParkingSpaceD StandardHouse
: . . river2

ater] T .
_River .

powerPlant

Hydroelectric-
PowerPlant

\ . e
Electricity

Fig. 3. A component network

Component networks can of course also be constructedawiynamic number of
component instances, as illustrated by the followirag@m].

VARIABLE
house[postalAddress: TEXT]: StandardHouse;
powerPlant: HydroelectricPowerPlant;
river[number: INTEGER]: River;
BEGIN
FOR n:=1TO N DO NEW(river[n]) END; (* N >= 1) *
NEW(powerPlant); CONNECT (Water(powerPlant), riigy;
REPEAT
location :=postal address of the new house;
NEW!(house[location]); CONNECT (Electricity(hollseeation]), powerPlant);
n :=number of nearest river;
CONNECT (Water(house[location]), river[n])
UNTIL no free building site available

Furthermore, a component may atsdirect the implementation of its own offered
external interfaces to its sub-components. For this gsespan offered external
interface (e.gParkingSpace of the SandardHouse below) can be connected to an
offered interface with the same name that belongssttbecomponent (e.garage).
Analogously, a required interface of a sub-component (eedVater interface of the
groundFloor) is also connectable to a corresponding interfatechwis required by
the super-component from outside.

COMPONENTStandardHouseOFFER SResidenceParkingSpaceREQUIRESElectricity , Water;
VARIABLE garage: StandardGarage; groundFloosthtoor: ANY(Rooms | Electricity, Water);
BEGIN

NEW(garage); NEW(groundFloor, Floor); NEW(fiektor, Floor);
CONNECT (ParkingSpace, ParkingSpace(garage));
CONNECT (Electricity(groundFloor), ElectricitTONNECT (Water(groundFloor), Water);
CONNECT (Electricity(firstFloor), Electricity)CONNECT (Water(firstFloor), Water)
END StandardHouse;

Fig. 4 depicts the corresponding connections for the exaaplee. As can be seen,
hierarchical composition inherently enables implemé@nateuse. TheStandard-
House component can be flexibly built by integrating the emgstSandardGarage
implementation as a sub-component and by redirectindgdhid ngSpace interface

® The elementary statements of the language are simitae ©©beron language [30, 31].

correspondingly. In contrast to object-oriented inhergatite concerns of reuse and
polymorphism are fully separated here.

. StandardHouse

Residenc
O Electricity
. O Water
ParkingSpac

Fig. 4. Redirected interfaces

In the preceding examples, the pointer issue of ordinary gmoging languages is
overcome: interface connections can arrange arbitrangponent networks, which
are always fully encapsulated by the surrounding compofidns. is due to the
following two important distinctions:

1. A connection only constitutes a link which is exclusiveet and controlled
by the surrounding component, whereas a pointer (ataksical reference)
forms a data value that can be freely copied from oaedther object.

2. A connection establishes a symmetric link betweergaired and an offered
interface, whereas a reference/pointer asymmetyitiaks a target from the
reference holder and may not be visible outside the holde

2.4 Communication-Based Interactions

Interfaces enable arbitrarily general communicatioseta interactions between
components. Two components, which are connected by a requidedffered inter-
face, can communicate over the interface by bidirectiomedsage exchange. The
feasible sequences of message transmissions duringrimaunication have to be
explicitly defined by a protocol in the interface. As example, theHotelService
interface below describes the protocol for the comnatioic between a component,
which offers this interface, and an external componehnichwses it (see the scenario
in Fig. 5).

INTERFACE HotelService

IN Checklin

OUT AssignedRoom(number: INTEGER)

{IN EnterRoom IN ExitRoom }

IN CheckOut OUT Bill(price: INTEGER) [IN iBectPayment(m: Money)]
| OUT FullyBooked

)

}
END HotelService;

A protocol is specified as a regular expression in the rigei Backus Naur
Formalism (EBNF) [29f. The symbols in the protocol denote messages that are
exchanged during the communication. Each message has a diegctarsmission
direction (either IN or OUT), an identifier (e.@heckin), and an optional list of
parameters (e.gaumber). The IN-direction defines that a message is serth¢o
component offering the interface, while the OUT-dii@ttcharacterises the opposite
direction of transmission. According to this, the commication protocol of the
HotelService interface can be understood as the temporal seriegssfages outlined
in Fig. 5.

HotelService

I -

Checkin
) alternatives:
¢ AssignedRoom ¢ FullyBooked
EnterRoom
arbitrary repetition .
; . A ExitRoom
(including zero times) — time axis
CheckOut
< Bill
optional DirectPayment
—

Fig. 5. Message communication via an interface

The parameters of a message represent componemicessthat are carried within a
message. Transmitted instances are always sewbpis which have the same
internal state and network of sub-components like thgnad (deep copy), and can in
turn be safely plugged into the receiver. Naturakglly huge instances (e.g. files)
should not to be transmitted as copies but should therraepresented bynique
identifiers (e.g. file descriptors or invariant file path expressioiich identifiers
however do not form inbuilt language constructs (such asickd pointers) but have
to be explicitly defined by the programmer itself, usingnmedr data values or
components. Consequently, a unique identifier can be edtili® interact (via
connected interfaces) with the component that costtie actual huge instance (e.qg.
with the file system).

An offered interface of a component can be used inlpalgl all the components
which are connected to the corresponding interface, elsas by the containing
super-component itself. The component which offers trerfatte plays the role of
the server of the interface, whereas the other components wigehthe interface act
asclients of this interface. For each client of an interfadee server automatically
maintains a separate statefulommunication channel. Hence, soBetomer com-
ponents may simultaneously perform their individual hotetck-in, while other

1 |n EBNF, a concatenation of expressions represents a segsgnare brackets [] indicate
an optional expression, curly brackets { } describe a répetdf zero or arbitrary times, and a
vertical bar | denotes an alternative between two exprasdigndefault, concatenation has a
stronger binding than an alternative. The default bindingrarale be explicitly changed with
round brackets ().

1 state-full means that the component saves the context fimtéaction with each individual
client.

10

clients are in another state of communication with sameHotel instance (see Fig.

6).

HotelService

active communication

:

Fig. 6. Multiple parallel client communications

The following program code sketches the implementatbna communication
between aCustomer and aHotel component. TheHotel component contains an
implementation block for the offeredotel Service interface. This implementation
block is automatically incarnatex$ a separate process for each client and runs as an
individual service agent for the client. Alternatively, th€ustomer component may
directly communicate via its required interface.

COMPONENTCustomer REQUIRESHotelService
BEGIN
HotelService!Checkln; (* send message *)
IF HotelService?AssignedRoom THEN(*receive te
HotelService? AssignedRoom(n) (*accept messa

* *

ELSE (* fully booked *)

COMPONENTHotel OFFERSHotelService
IMPLEMENTATION HotelService
BEGIN
st“WHILE ?Checkin DO {EXCLUSIVE}
pe*) ?Checkln; (* accept message *)
IF (*free room*) THEN !AssignedRoom(n)
ELSE !FullyBooked END

HotelService?FullyBooked (* accept message *)| END
END END HotelService;
END Customer; END Hotel;

The send statement (denoted with "!"), delivers a medseathe other communication
side, by filling the message with copies of the specifiedrpater arguments. A copy
forms an identical clone of the original, such thatdlome contains the same internal
state, which includes the network of sub-componerttss@ internal components are
again recursively copied. Conversely, the receiveestant (denoted with "?") awaits
the arrival of a specific message from the other canication side and accepts the
message on arrival. The contained component instaridee received message are
eventually assigned to the corresponding variables, wdrielspecified as parameter
arguments. A receive statement blocks the executiooresds the message is not
received. The receive-test function (an expression denvdth "?")?, tests whether a
specific message can be received from a specific icterfy first awaiting any
message input. The receive-test function hence blockextseution until the arrival
of any message from the interface but does not yepatue message nor assign the
message parametrs

Within the implementation block, the send- and receteéements without
specified interface directly refer to the correspondingnt| which is served by the
block. Conversely, for the communication in the ralex client, the interface has to
be explicitly specified.

12 Notably, a receive-test function is uniquely distinguishaldenfa receive-statement, as it
forms a syntactical expression and not a statement.
13 Additionally, there is also a non-blocking INPUT-functiencheck the arrival of a message.

11

It is dynamically checked that all required interfacea obmponent are connected
when a communication is initiated via one of its afterinterface. During a com-
munication between a client and server, all messhges to be sent and received
according to the defined protocol. The fulfilment of thetocol is dynamically
monitored for each communication, and in the case dblation, a runtime error is
generated. When a client is disconnected from a coemprihe implicit END
message (without parameters), is automatically delivevehe server side and may
be optionally accepted by the server.

In the course of the subsequent application of the coemidanguage, some of
the aforementioned elements for component implementatwill be explained in
more detail when required. Those, who desire a comppeeification of the
component language, are referred to the language report [9].

3 Examples

This section illustrates practical examples of tbmgonent language, by contrasting
them to corresponding object-oriented solutions.

3.1 Producer-Consumer

The first example demonstratepraducer-consumer scenario, where both producer
and consumer autonomously interact in parallel with ancombounded buffer.

COMPONENTProducer REQUIRES DataAcceptor;
VARIABLE i: INTEGER,;
BEGIN FORi:= 1 TO 100000 DO DataAcceptor!ElettBrEND
END Producer;

INTERFACE DataAcceptor,
{ IN Element(x: INTEGER) }
END DataAcceptor;

COMPONENTConsumer REQUIRES DataSource;

VARIABLE i: INTEGER;

BEGIN WHILE DataSource?Element DO DataSource?Ela() END
END Consumer;

INTERFACE DataSource
{ OUT Element(x: INTEGER) }
END DataSource;

COMPONENTBoundedBuffer OFFERS DataAcceptor, DataSource;
CONSTANT Capacity = 10;
VARIABLE a[position: INTEGER]: INTEGER; first, Ist: INTEGER; finished: BOOLEAN;

IMPLEMENTATION DataAcceptor,
BEGIN
WHILE ?Element DO {EXCLUSIVE}
AWAIT (last-first < Capacity); ?Element(a[lagiOD Capacity]); INC(last)
END;
BEGIN {EXCLUSIVE} finished := TRUE END
END DataAcceptor;

12

IMPLEMENTATION DataSource
BEGIN
REPEAT {EXCLUSIVE}
AWAIT ((first < last) OR finished);
IF first < last THEN !Element(a[first MOD Cagity]); INC(first) END
UNTIL finished
END DataSource;
BEGIN first := 0; last := 0; finished := FALSE
END BoundedBuffer;

In the previous example, the component body ofBbhendedBuffer initialises the
buffer, before interactions over offered interfacee accepted. The server-side
processessérvice agents) of the offered interfaces are internally synchronised by
using an exclusivenonitor lock on the component instance, in combination with
AWAIT-statements. An AWAIT-statement blocks the exemutuntil the fulfilment

of a local condition, by temporarily releasing the nbaniock. This monitor-oriented
synchronization is only applicable inside the componestance, and forms a
supplement to inter-component interactions, which are gneoehmunication-based.
The consumer-producer program may consequently be seffolfpas (see Fig. 7):

COMPONENTSimulation;

VARIABLE buffer: BoundedBuffer; producer: Produreonsumer: Consumer;
BEGIN

NEW(buffer); NEW(producer); NEW(consumer);

CONNECT (DataAcceptor(producer), buffer); CONNEO&taSource(consumer), buffer)
END Simulation;

Producer and consumer immediately start to interadh Wit buffer, when the
Smulation is created and the components have been appropriateheated.
Naturally, one can also connect multiple producers ranttiple consumers to the
same buffer.

Simulation

‘DataSourcg

Fig. 7. Producer-consumer scenario

In object-orientated languages, such a scenario entailexhiecit incarnation of

threads, which run as concurrent procedural executions on thesiy@a objects.

Concurrency is therewith not only poorly supported aeeondary programming
element (mostly provided by a separate library) but thnegeaictions are also only
insufficiently describable. Threads may only interacplipitly by operations on

shared resources, whereas the autonomously running compafeodr language

interact in a clearly defined way by bilateral messag#ange according to a formal
protocol.

3.2 Digital Library

By way of a second example, we program a digital libvemich contains a dynamic
collection of books. In the library, generic books viltle offeredBook interface can

13

be stored. The library is usable in parallel by ant@ny number of connected

customer components (see Fig. 8), which may request digjtéés of books or may

also list the book catalogue. Book references are diremifjelled as what they really
are: unique identities in the form of international dt&d book numbers (ISBNSs).

These real references do not involve any specifigdage concept but only form self-
defined identifiers of component instances. Hence, mefatences imply neither a

direct access link nor an existence guarantee. An ideshtibok can be transmitted as
a copy within a message from the library to theegponding customer. The program
code for the digital library is:

INTERFACE Library ;
{ IN RequestBook(isbn: TEXT) (OUT Book(b: ANY(B&)) | OUT Unavailable)
| IN ListCatalogue { OUT BookReference(isbn: TE¥ OUT EndOfList }

END Library;

COMPONENTDiIgitalLibrary OFFERS Library;
VARIABLE book[isbn: TEXT]: ANY (Book);

IMPLEMENTATION Library ;
VARIABLE isbn: TEXT; b: ANY(Book);
BEGIN
WHILE ?RequestBook OR ?ListCatalogue DO
IF ?RequestBook THEN {EXCLUSIVE}
?RequestBook(isbn);
IF EXISTS(book[isbn]) THEN !Book(book[isbnELSE !Unavailable END
ELSE {SHARED}
?ListCatalogue; FOREACH isbn OF book DO ¢BBeference(isbn) END; !EndOfList
END
END
END Library;
END DigitalLibrary;

Customer ; DigitalLibrary
‘ -13-06229667 book['0-471-94148-4]

Fig. 8. Encapsulated library

Again, a few explanatory remarks may be helpful. The bookise library are stored
within a dynamic component collection (cf. Section)2To identify the contained
instances in the collection, ISBNs are used as ind&@tes.inbuilt EXISTS-function
tests whether a defined element is contained in the dgnaotlection. If present, a
copy of the appropriate book is sent. Note that the @hae inexistent book can be
accurately communicated by an alternative message (hdnmawailable), whereas in
object-orientation, an artificialull reference often represents this case. The state-full
process of listing the book catalogue, involves a shacéddbthe library, permitting
concurrent iterations by other users. During iteratiemy modification is however
prevented by exclusive locks. The FOREACH-statement allbesstération over all
instances in a collection, where each iteration stgigas a valid index to the
specified iteration variable.

14

3.2.1 An Object-Oriented Library as Contrast

Unlike our language, an object-oriented program canacotrately describe the
encapsulation of dynamic object structures inside atbgrcts, as object-orientation
does not feature a hierarchical composition relatidmer&fore, an object-oriented
language can not guarantee the encapsulation of books librérg but compels the

programmer to allocate the internal books of the lib@synormal objects in the
system-wide flat object graph. Very cautious programmirlgen required to prevent
passing out references to internal books of the libiragrror. The following object-

oriented program illustrates this situation:

classBook {
string isbn; string content; Book]] references;
void Annotate(string note) { content += note; }

}

classLibrary {
Book[] books;
BookRequestBookstring isbn) {
for (inti=0; i< books.Length; i++)
{ if (books[i] = null) && (booksJi].isbn ==isbn)) { return books]i].Clone(); } }
return null; /* null means unavailable */
}
}

Analogous to the component-oriented program, the requestéddbjects are also
transferred as copies between the library and the roestoas the client could
otherwise modify the original book in the library. Hover, despite this precaution,
the (directly or indirectly) referenced books in thedilgrmay then still be incorrectly
accessed by an external customer (see following progeeymént and also Fig. 9).

classCustomer {
Library library;
void IncorrectUse {
Book book = library.RequestBook("3-468-1112%-
Book x = book.reference[0];
read(x.content); /* forbidden reading usenfinternal book of the library */
x.Annotate("personal note"); /* forbidden nifgthg use of an internal book of the library */
}
}

Legend:

O Object
reference[0] —» Reference
Encapsulation breach

Fig. 9. Incorrect referencing

This demonstrates how vulnerable object-oriented pnograre, by the fact that
references can conceptually link arbitrary objects indysem and can be freely
copied around. Hence, it may be argued that object-orienfieetmees ought not to
be used to represent book references in this examplethémapproach of only

15

passingead-only references [22], does not give any sustainable solettber, since
books may still be read without permission.

Catalogue listing is also only inadequately realizablehject-orientation, because
the client-individual iteration process has to be fagcioutsourced to an artificial
iterator object. As a consequence, the external iterator dvatote then a reference
(or other specific information) that directly breaksoithe internal library structure
(see Fig. 10). (This encapsulation breach is often dersil as a counter-example for
the proposed object-oriented encapsulation mechanisms [1}1, 22]

Fig. 10.Iterator object

4 Language Implementation

The presented component language has been completely imgdeimeomprising a
compiler and runtime system, which are based on thebBttle operating system
[10, 23]. The runtime system is designed as a stackihégaal machine, supporting
an intermediate language that consists of a sensibbgtedl combination of both
primitive functionality (e.g. integer addition) and more @bex functionality (e.g.
message sending and receiving). These complex instruaticwly correspond to
fundamental high-level language abstractions. The compigrerates the inter-
mediate code, which is in turn automatically transfed to the backend machine
code by the virtual machine. Backend code generatiomlisinitiated at the time
when the intermediate code is loaded.

For hierarchical composition, component instances anardically organised in
the linear heap memory with appropriate memory intdoes. An internal data
structure automatically manages an indexed collecti@mowiponent instances. Here,
an adaptive data structure may be reasonable, e.gnpdeslinear list for small
collection sizes and a B-tree for larger sizes. Dueh® hierarchical lifetime
dependencies of compositions, automatic garbage colldctionemory-safe runtime
management is no longer needed. Components can be dileedjocated on the
disposal of the super-component, without suffering exter(aive generally system-
blocking) garbage collection.

High and efficient parallelism is most critical for thdequate runtime support of
component instances and their internal processeghisopurpose, the Active Object
technology [23] of the Bluebottle operating system is athgeous, as it provides
particularly light-weighted parallelism with low-cost cert switches. Of course,
there is still much potential and need for further ioyement of concurrency.

The communication between two components is implemehtedn internal
bidirectional message channel. These channels have boboftfed sizes, to avoid

16

dynamic memory allocations on message sending. Thencoioation protocol is
dynamically monitored by using a finite state machihat is automatically generated
by the backend compiler from the protocol specification

Table 1 gives an impression of the system's performandescalability by means
of experimental measurements with three test applicatewveildble at [9]): (1) a
producer-consumer scenario with 100,000 exchanged elements, $®)all city
simulation (as in Section 2) with 100 houses, each conguiy®00 units of water
and electricity, and (3) a large city simulation with 1,000des. Whereas the small
city simulation only involves about 500 components and 306epses, the large city
requires more than 5,000 components and 3,000 processe®stle are first com-
pared to analogous programs written in Active C# [13] andat Windows
implementation of AOS (called WinAOS [12]). On a Ini, 2.6GHz with 2 logical
processors, our component system shows a substahigtigr performance than the
Windows-based systems and also scales higher withdrégaéine number of parallel
processes. The performance advantage is mainly due fastheontext switches of
processes in the underlying Bluebottle system; direcesbstvitches are for example
performed on message sending and receiving, if the otimemanication partner is
already waiting for a message transfer. Compared tdr#uitional thread-based
systems, the higher scalability results from theeiowstack overhead of the active
object technology. To estimate the costs of the virtoathine of the component
system, the performance is also measured with analdgiue Oberon programs,
which directly run on the native Bluebottle system (wbereur virtual machine runs
as well). As the difference between both systems shihvesoverhead of component
language is relatively small, i.e. not higher than ali@upercent.

Table 1 Comparison of execution times (in seconds)

Test application Component SystefnActive C# WiIinAOS Native Bluebottlg
Producer-consumer 1i6 4.4 10 1.6
Small city simulatior 2.9 360 24 2.7
Large city simulation 30| - (out of memory) | - (out of memory) 28

5 Related Work

The presented language is to our knowledge, the first ggmenabse programming
language which directly integrates a general componeramaiith only high-level
programming concepts, and which is free of the clalspicblematic constructs of
references, methods and inheritance (see Section he &mdamental concepts of
this language are however similar to previous works.

Interface connections The Microsoft COM [27, 28] wiring mechanism (see [26],
Section 10.3) with incoming and outgoing interfaces hamlagities to the offered
and required interfaces in our language, but is only designgabport asynchronous
events using classical method calls. Hence, convenhtmiaters (or references) still
establish the typical component relations in COMe Thodel of provided and
required interfaces is also often used in architecturerigéen languages [3, 20, 21].
However, these languages do not form real programming languaigestballow the

17

formal description and specification of software architexs. Dynamic structures of
components are generally not describable, as the muafbsomponents is either
static or fixed by a parameter. Moreover, interactiongha be either inadequately
represented by method-based interfaces [21], or by dwal-Imessage channels
(called ports), which are often even unidirectional (kkectronic wires) [20]. Other
architecture description languages [3] do not have duaidedand required inter-
faces, but instead necessitate artificial constrdoeted glue) to bind a set of ports.
With these low-level ports, each client requires a sgpanterface port for individual
communication but a component is typically unable to sugogrbitrary (dynamic)
number of ports.

Symmetric polymorphism. The symmetric support of offered interfaces is
comparable to COM and Zonnon, but in our language, adesf are merely com-
munication-oriented. Interfaces are also often provittegether with a special
concept of reusable implementation parts, such as sj&inor traits [24]. However,
in our language, composition and interface redirectionrenttly permit flexible
implementation reuse without needing such an artifi@deanixing mechanism.

Communication-based interactions.The paradigm of message communication
has been introduced with CSP [18] and realised in Oc@&in However, a decisive
distinction to our language model is that a componenle(talocess) in CSP/Occam
can not interact with multiple interface clients indivally, but has to explicitly
handle all possible overlapping of client interactiona a time-multiplexed
communication channel. The formal Actor model [15, 1], owhalso proposes
communicating parallel components, requires the explidéntification of
communication partners by means of references (caldacdresses). This does not
only impede clearly described client-individual commutigees, but also implicates
the elementary problems of references like in objeetation. Our communication
model with individual clients is rather influenced frahe activity concept of Active
C# [13] and Zonnon [14]. Though, in Active C# and Zonnonentt have to
explicitly invoke an activity and interact with the weied dialog, whereas this
component language permits direct client-individual comnatities via interfaces.
A further distinction can be made as the componentulgg supports explicit
messages with a set of data values and instances thatraied in parameters.
Conversely, data values and explicit tokens/tags halve tansmitted as single items
in Zonnon, Active C#, CSP, and Occam.

Component systemsA variety of other component models have been invetoted
enhance structuring, deployment, extendibility and reusabil software [26]. Java
Beans, Enterprise Java Beans, CORBA, Microsoft COM, the Microsoft .NET
framework are only some representatives of popular compaystgms. All these
models however have the same fundamental deficiencibsragard to references
and methods (see Section 1). With the exception of COMgcBbjiented component
models also integrate the inheritance relation andistissed disadvantages.

Other related work. In addition, many efforts have been made to tackle the
problems of references with visibility restrictior,[ownership models [16, 4, 11,
22, 6, 2], region models [7], encapsulation policies 4] many more. The common
problem of all these approaches is that they arebstied on the classical low-level
model of references and thus require complicated rulemsgstmostly integrated in
type systems), to ensure structural conditions. Bae these models can generally

18

not describe state-full and client-individual interacti¢n. iterators in Section 3.2),

such that the encapsulation has to be forcibly broken bypusing read-only

references [22], dynamic parameter aliasing [16, 4Jsimply normal unrestricted

references. As conventional references are still stggh@s standard constructs in
these models, the majority of objects may neverthdbesexposed as part of the
system-wide flat object graph.

6 Conclusion

The presented component language is a radically new agipfor more powerful
and structured programming. It integrates a general coempomotion with
appropriate high-level programming concepts, to enablectstal clarity, high
dynamicity, together with inherent parallelism. Aseault, immanent solutions to the
various shortcomings of the currently prevalent objeinted programming
paradigm can be gained. The complete implementationhandetailed report of the
component language can be found at [9].

Acknowledgments

| am particularly grateful to Prof. Dr. Jirg Gutknecht Fos support and helpful
advice during this work and for this paper. Many thanks & dlie to Dr. Thomas
Frey, Dr. Felix Friedrich and other colleagues for thrminstructive reviews and
suggestions for improvement.

Reference&

1. G. Agha. Actors: A Model of Concurrent Computation in Blistted Systems. MIT Press,
1986.

2. J. Aldrich and C. Chambers. Ownership Domains: Separatingsidfj Policy from
Mechanism. In European Conference on Object-Oriented Progrgn{(BCOOP), June
2004.

3. R. Allen and D. Garlan. A Formal Basis for Architectuannection. ACM Transactions
on Software Engineering and Methodology, 6(3): 213-249, July 1997.

4. P.S. Almeida. Balloon Types: Controlling Sharing of Siat®ata Types. In European
Conference on Object-Oriented Programming (ECOOP), 12@e.

5. G. Bracha and W. Cook. Mixin-based Inheritance. In Objex@rd Programming
Systems, Languages, and Applications (OOPSLA), October 1990.

6. C. Boyapati, R. Lee, and M. Rinard. Ownership Types foe 8abgramming: Preventing
Data Races and Deadlocks. In Object-Oriented Programmisigr8y, Languages, and
Applications (OOPSLA), November 2002.

7. C. Boyapati, A. Salcianu, W. Beebee, M. Rinard. Ownersiges for Safe Region-Based
Memory Management in Real-Time Java. In Programming wagg Design and
Implementation (PLDI), June 2003.

4 with regard to the discussion in Section 3.2, this sedstsreal references.

19

8.

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

B. Bokowski and J. Vitek. Confined Types. In Object-Orientedgfmming Systems,
Languages, and Applications (OOPSLA), November 1999.

L. Blaser. The Component Language. ETH Zurich, Switzerland,.28@8&lable from
http://www.jg.inf.ethz.ch/components.

J. Gutknecht, P. J. Muller, T. M. Frey, et al. Thaidottle Operating System. ETH
Zurich, Switzerland. Available from http://www.bluebotdthz.ch.

D.G. Clarke, J.M. Potter, and J.Noble. Ownership Type§iexible Alias Protection. In
Object-Oriented Programming Systems, Languages, and Agpmtisa (OOPSLA),
October 1998.

F. Friedrich. The WinAOS Oberon System. ETH Zurich, Seviand. Available from
http://www.bluebottle.ethz.ch/winaos.

R. Gintensperger and J. Gutknecht. Active C#. .NET TechiesioMay 2004.

J. Gutknecht and E. Zueff, Zonnon Language Report, ETH ZuBisftzerland, October
2004. Available from http://www.zonnon.ethz.ch.

C. Hewitt, P. Bishop and R. Steiger. A Universal ModuletoA Formalism for Artificial
Intelligence, International Joint Conference on Artificiaklligence (IJCAI), 1973.

J. Hogg. Islands: Aliasing Protection in Object-Orienteddiemges. In Object-Oriented
Programming Systems, Languages, and Applications (OOP&lcdpper 1991.

C.A.R. Hoare. Hints on Programming Language Design. &t@u#rtificial Intelligence
Laboratory Memo AIM-224 or STAN-CS-73-403, Stanford UniugrsiStanford,
California, December 1973.

C.A.R. Hoare. Communicating Sequential Processes. Comrtiongaof the ACM,
21(8):666-677, 1978.

Inmos Ltd. Occam 2 Reference Manual. Prentice-Hall, 1988.

J. Magee and J. Kramer. Dynamic Structure in Softwarehitéxtures. In Fourth
Symposium on the Foundations of Software Engineering (FSE)b&r 1996.

N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Lagguand Environment for
Architecture-Based Software Development and Evolution. leriational Conference on
Software Engineering (ICSE), May 1999.

P. Miller and A. Poetzsch-Heffter. A Type System foia#land Dependency Control.
Technical Report 279, Fernuniversitat Hagen, 2001.

P. J. Muller. The Active Object System. Design and Mutipssor Implementation. PhD
thesis 14755, Department of Computer Science, ETH Z(209%.

N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. Blackits: Composable Units of
Behaviour. In European Conference on Object-Oriented Progragn(@COOP), July
2003.

N. Scharli, S. Ducasse, O. Nierstrasz, and R. WuytsipBeable encapsulation policies.
In European Conference on Object-Oriented Programming (ECQQR,2004.

C. Szyperski. Component Software, Beyond Object-Orientedr&roning. Addison-
Wesley, 1998.

A. Williams. Dealing with the Unknown — or — Type Safetyaibynamically Extensible
Class Library. Draft, Microsoft Application Division, 988. Available from
research.microsoft.com/comapps/docs/ Unknown.doc.

A. Williams. On Inheritance: What It Means and How to UseDraft, Applications
Architecture Group, Microsoft Research, 1990. Availablenfreesearch.microsoft.com/
comapps/docs/Inherit.doc.

N. Wirth. What can we do about the unnecessary diversity t#tioo for syntactic
definitions? Communications of the ACM, 20(11): 822, 823, Nuwer 1977.

N. Wirth and J. Gutknecht. The Oberon System. SoftwareaetiPe and Experience,
19(9): 857-893, September 1989.

N. Wirth. The Programming Language Oberon. Softwarectieeaand Experience, 18(7):
671-690, July 1988.

20

