
A Programming Language with Natural Persistence

Luc Bläser
Computer Systems Institute, ETH Zurich, Switzerland

blaeser@inf.ethz.ch

Abstract
As data persistence is very poorly supported by current program-
ming systems, we have initiated a research project to improve this
situation. The result is the new programming language Persistent
Active Oberon, which directly institutionalizes persistence as a fun-
damental concept and liberates the programmer from writing com-
plicated code for database interactions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Contructs and Features Classes and objects,
Modules, packages; H.2.4 [Database Management]: Systems
Concurrency, Object-oriented databases, Transaction processing

General Terms Design, Languages

Keywords Object Persistence, Language Design and Implemen-
tation

1. Introduction
Data persistence (the fact that data is durably stored and survives
system restarts) is traditionally regarded as a concern that is out-
sourced from a programming language and provided by a separate
system, such as a database, a component serialization framework,
or a file system. However, with all of these methods, a program-
mer has to endure the considerable work of eventually facilitating
persistence, be it by programming the necessary interaction with
an external system or designing the software for a special per-
sistence framework. While this effort may be acceptable for pro-
grams with a simple data topology, persistence support for object-
oriented models is however particularly complicated due to the dy-
namic nature of object graphs, and the associated runtime man-
agement of preserving referential integrity. The dilemma of this
groundless and strong division between the domain of persistence
and the field of programming could be abandoned by institution-
alizing persistence in the programming language. Despite numer-
ous previous efforts, [1, 2, 5], no persistent programming language
has yet been developed, which really enables persistence with-
out any artificial specific programmer handling. All hitherto per-
sistent languages involve explicit loading/storing of persistent ob-
ject roots, special transactional management etc. with a dedicated
database API. However, with Persistent Active Oberon, we have
now designed and implemented a programming language with nat-
urally inbuilt persistence. The language is based on Active Oberon
[4, 8, 9] and runs on the AOS operating system [7].

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

2. Design
In Persistent Active Oberon, data persistence can be derived as an
inherent property of the underlying concept of modules. Besides
representing a static compilation and deployment unit, modules
also form singleton instances in the system, maintaining individual
program states. A module is automatically loaded by the system, as
soon as it is used for the first time (by the user or an importing mod-
ule). Once loaded (and initialized), the module stays permanently
alive and survives all subsequent system restarts. Therefore, the en-
tire state of modules is inherently persistent. Naturally, references
also belong to this persistent state and should remain valid at sys-
tem restart. In other words, modules constitute the persistent roots,
implicitly making all transitively reachable objects of the global
state persistent. Figure 1 outlines this with the example of a per-
sistent hospital program, together with a possible runtime topology
of corresponding instances. Clearly, the module looks identical to a
conventional Active Oberon program, i.e. persistence is here indeed
seamlessly integrated in the language.

The persistent module significantly changes the notion of pro-
gram lifetimes: System restarts due to failures, power pauses or
maintenance work, no longer cause the abrupt program termina-
tion but only interrupt the program execution. In a future system
incarnation, the program is then simply resumed and the latest con-
sistent computing state should have survived the system restart.
Hence, the execution can be described in terms of atomic tran-
sitions from a consistent computing state to the next. In Persis-
tent Active Oberon, such a transition is called transaction, which
again can be composed of multiple sub-transactions (nested trans-
actions). Only the data state, which has been computed by a com-
pletely executed top-most transaction, eventually becomes durable.
All other data changes are only temporary to a running transac-
tion execution and are discarded on a sudden system restart. In this
programming model, transactions are implicitly defined as proce-
dures, describing a semantic higher operation that only changes the
program state consistently. Invoked procedures within other proce-
dures are then considered as sub-transactions. The intrinsic activity
of an object (the concurrency concept of Active Oberon [4], de-
noted with the ACTIVE attribute), eventually specifies a sequence
of top-most transactions. Figure 2 delineates the use of transactions
with the example of a bank system.

3. Implementation
The implementation of Persistent Active Oberon comprises a com-
piler, a runtime system with a persistent storage infrastructure and
a main memory caching mechanism, as well as a schema evo-
lution facility, to manage multiple versions of the same module
and to migrate the persistent data to new versions. An incremen-
tal garbage collector enables efficient and complete reclamation of
non-persistent objects, using the persistent mature object space al-
gorithm [6] with a new extension for the support of simultaneous
object caching [3].

637

MODULE Hospital;
 TYPE
 Patient = OBJECT
 VAR name: ARRAY 32 OF CHAR; age: INTEGER;
 doctor: Doctor;
 END Patient;

 Doctor = OBJECT (* … *) END Doctor;
 PatientList = OBJECT (* … *) END PatientList;

 VAR patients: PatientList;

END Hospital.

Hospital PatientList

Patient 1

Patient 2

Doctor 1

module
(persistent)

object
(persistent)

reference
(persistent)

Legend

Figure 1. A persistent program

Account = OBJECT
 VAR balance: REAL;

 (* an implicit transaction *)
 PROCEDURE Withdraw(amount: REAL): BOOLEAN;
 BEGIN
 IF balance >= amount THEN DEC(balance, amount); RETURN TRUE
 ELSE RETURN FALSE END
 END Withdraw;

 PROCEDURE Deposit(amount: REAL);
 BEGIN INC(balance, amount)
 END Deposit;
END Account;

PROCEDURE Transfer(sender, receiver: Account; amount: REAL);
VAR success: BOOLEAN;
BEGIN
 success := sender.Withdraw(amount); (* sub-transaction *)
 IF success THEN receiver.Deposit(amount) END
END Transfer;

BankManager = OBJECT
VAR a, b: Account; success: BOOLEAN;
BEGIN {ACTIVE}
 success := Transfer(a, b, 1000); (* top-most tranaction *)
 ReportStatus(success)
END BankManager;

Figure 2. Implicit transactions

Performance measurements have shown that the persistent run-
time system is certainly competitive to the scalability and efficiency
of a classical database solution [3].

The system also permits safe interoperability between persistent
and conventional non-persistent modules, such that one can flexibly
decide where persistence is needed and the implied higher runtime
costs are justified. For this purpose, references leading from a per-
sistent to a conventional module are flagged with the TRANSIENT
attribute and are safely reset to NIL on system restart.

4. Conclusion
The example of Persistent Active Oberon shows that data persis-
tence can be supported as a naturally inbuilt concept of a program-
ming language, significantly easing the use of persistent data in a
program. The source code and a running version of the system are
available at [3].

Acknowledgments
Many thanks go to Prof. Dr. Jürg Gutknecht, Dr. Thomas Frey, and
Raphael Güntensperger for their helpful support during this work.

References
[1] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, et al. PS-Algol: A

Language for Persistent Programming. Australian National Computer
Conference, Sept. 1983.

[2] M. P. Atkinson, L. Daynès, M. J. Jordan, et al. An Orthogonally
Persistent Java. SIGMOD Record, 25(4):68-75, Dec. 1996.

[3] L. Bläser. The Persistent Active Object System. ETH Zurich, 2004.
http://www.bluebottle.ethz.ch/Persistent

[4] J. Gutknecht. Do the Fish Really Need Remote Control? A Proposal for
Self-Active Objects in Oberon. Joint Modular Languages Conference
(JMLC), March 1997.

[5] A. L. Hosking and J. Chen. PM3: An Orthogonally Persistent Systems
Programming Language Design, Implementation, Performance. Very
Large Database Conference (VLDB), Sept. 1999.

[6] J. E. B. Moss, D. S. Munro, and R. L. Hudson. PMOS: A Complete and
Coarse-Grained Incremental Garbage Collector for Persistent Object
Stores. Intl. Workshop on Persistent Object Systems (POS), May 1996.

[7] P. J. Muller. The Active Object System. Design and Multipro-
cessor Implementation. PhD Thesis 14755, ETH Zurich, 2002.
http://www.bluebottle.ethz.ch.

[8] N. Wirth and J. Gutknecht. The Oberon System. Software - Practice
and Experience, 19(9): 857-893, Sept. 1989.

[9] N. Wirth. The Programming Language Oberon. Software - Practice
and Experience, 18(7): 671-690, July 1988.

638

