
Accelerate JavaScript Applications by
Cross-Compiling to WebAssembly
Micha Reiser

micha.reiser@hsr.ch
HSR Hochschule für Technik Rapperswil

Department of Computer Science
Rapperswil, Switzerland

Luc Bläser
luc.blaeser@hsr.ch

HSR Hochschule für Technik Rapperswil
Department of Computer Science

Rapperswil, Switzerland

Abstract
Although the performance of today’s JavaScript engines is
sufficient for most web applications, faster and more pre-
dictable runtimes could be desired for performance-critical
web code. Therefore, we present Speedy.js, a cross-compiler
that translates JavaScript/TypeScript to WebAssembly, a
new standard for native execution supported by all major
browsers. Speedy.js only imposes minimal restrictions on
the JavaScript code, namely that the performance-critical
functions are wrapped in TypeScript and only engage a
performance-optimal subset of the JavaScript language.With
this approach, we manage to make compute-intense web
code up to four times faster, while reducing runtime fluctua-
tions to the half.

CCS Concepts • Software and its engineering→Com-
pilers; Scripting languages;

Keywords WebAssembly, JavaScript, TypeScript, Cross-Co-
mpilation, Optimization, LLVM
ACM Reference Format:
Micha Reiser and Luc Bläser. 2017. Accelerate JavaScript Applica-
tions by Cross-Compiling to WebAssembly. In Proceedings of ACM
SIGPLAN International Workshop on Virtual Machines and Inter-
mediate Languages (VMIL’17). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3141871.3141873

1 Introduction
The web has become a ubiquitously available application
platform and increasingly popular target for a wide variety
of applications. Traditionally, these applications are written
in JavaScript, as it is the only natively supported high-level
language of the web. Despite the tremendous and ongoing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VMIL’17, October 24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5519-3/17/10. . . $15.00
https://doi.org/10.1145/3141871.3141873

improvements of JavaScript engines [14], the performance
of JavaScript is still insufficient for compute-intense applica-
tions like simulations, graphic manipulation, cryptography,
or games. The reason for the performance discrepancy are
not inadequately designed JavaScript engines, but mainly
inherent to the design of the JavaScript language itself that
favors ease of use over performance. These considerations
in conjunction with the ubiquity of the web platform raise
interest in a compilation target for high-level languages on
the web.

The first specification that allows JavaScript as a compila-
tion target for low-level programming languages like C++
is asm.js [11]. It is a restrictive subset of JavaScript that sup-
ports ahead-of-time-optimizing compilation and achieves
near-native performance [33]. Since asm.js compiles to Java-
Script, it inherits the disadvantageous properties of the non-
predictable engine-specific performance, in addition to a
significant overhead for parsing and compiling the source
code before execution [6, 32].
The WebAssembly standard advances the idea of asm.js

by defining a machine-close, yet platform-independent inter-
mediate language in binary code format for the web [10, 28].
WebAssembly is supported in the latest stable or the up-
coming versions of all major browsers [25, 26]. Further-
more, various compilers of existing languages, like C++ and
Rust [4, 9, 22, 30], as well as for new languages [1, 29] spe-
cially designed for WebAssembly, support it as a compilation
target. This ecosystem gives the programmer the desired
freedom to choose the programming languages with the
most suitable characteristics for a specific application, e.g.
one that favors performance over ease of use for compute-
intense applications.
Introducing one of the languages mentioned above to a

project based on JavaScript adds undesired complexity, es-
pecially if there are only a few performance-critical func-
tions. In fact, it forces a project to swap out performance-
critical code into a separate project, written in a language
that supports WebAssembly as a compilation target. More-
over, it requires a manually programmed bridge between the
conventional JavaScript and outsourced WebAssembly code.
Currently there exists no tool that automatically accelerates
web applications through WebAssembly compilation.

10

https://doi.org/10.1145/3141871.3141873
https://doi.org/10.1145/3141871.3141873

VMIL’17, October 24, 2017, Vancouver, Canada Micha Reiser and Luc Bläser

Therefore, we present Speedy.js, a cross-compiler that
translates performance-critical JavaScript/TypeScript code
to WebAssembly and generates the necessary glue code to
integrate the WebAssembly code inside the conventional
JavaScript application. This approach eventually enables sig-
nificant accelerations of compute-intense web code, while
reducing runtime fluctuations that otherwise common in
JavaScript browser engines.

Speedy.js only imposes a few restrictions on the program-
mers: It only supports a subset of JavaScript for the imple-
mentation of performance-relevant functions in order to
avoid typical performance-problematic language features. It
also favors performance by relaxing memory safety within
the sandboxed WebAssembly browser execution, such as
by omitting array boundary checks or memory default-ini-
tialization. Moreover, Speedy.js requires that the functions
for Web Assembly cross-compilations are written in Type-
Script with type annotations used by our cross compilation,
together with a special directive that marks the function as
performance-critical. Considering that TypeScript is widely
used in practice as a typed dialect of JavaScript, this should
be no relevant practical restriction for web programmers
either.

In summary, this paper makes the following contributions:
• Description of a new compiler tool for accelerating
performance-critical web code through translation to
WebAssembly.

• Report on the experimental evaluation of the perfor-
mance gains achieved by this new tool.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the programming model of Speedy.js. Sec-
tion 3 explains the cross-compilation. Section 4 describes the
runtime system. Section 5 evaluates the performance gain of
Speedy.js. Section 6 compares Speedy.js with related work
and is followed by section 7 concluding this paper.

2 Programming Model
Speedy.js allows to accelerate certain functions in JavaScrip-
t/TypeScript code that are compute-intense. For this purpose,
the corresponding functions have to be written in TypeScript
by using type annotations and attributing an additional di-
rective. As TypeScript is a super-set of JavaScript and is also
transpiled to JavaScript, these Speedy.js-enabled functions
can easily be invoked by TypeScript and ordinary plain Java-
Script code.

Listing 1 shows the example of an isPrime function (line
1) implemented in Speedy.js that determines whether the
passed int argument is a prime number or not. The isPrime
function is called from the regular function main (line 18)
that logs the result to the console. The "use speedyjs" di-
rective as the first statement of the isPrime function (line 2)
identifies it as a Speedy.js function. In this example, only the
isPrime function is translated to WebAssembly, while main

1 async function isPrime(value: int) {

2 "use speedyjs";

3
4 if (value <= 2) {

5 return false;

6 }

7
8 const sqrt = Math.sqrt(value) as int;

9 for (let i = 2; i <= sqrt; ++i) {

10 if (value % i === 0) {

11 return false;

12 }

13 }

14 return true;

15 }

16
17 async function main() {

18 const prime = await isPrime(10000);

19 console.log("isPrime 10000: " + prime);

20 }

Listing 1. Prime number check implementation using
Speedy.js

is mapped to JavaScript code that contains the necessary
glue code for invoking the WebAssembly-based isPrime
function. Speedy.js functions are transparently callable from
regular TypeScript (line 18) or equivalent plain JavaScript
code. Since the JavaScript API for loading a WebAssembly
module is asynchronous, these functions must be declared
async.

As for implementation of Speedy.js functions, only a sub-
set of the JavaScript language is supported. This chosen
subset only covers language features that can be mapped
to efficient native code, such as variables, most expressions,
assignments, control statements, arrays, classes, as well as
function declarations and calls (even recursive). Features that
are deliberately excluded for Speedy.js functions are proto-
type inheritance, object literals, closures, reflection etc.1 The
usage of unsupported language features results in a compile-
time error. The motivation behind this restriction is that
programmers can rely on an efficient execution of Speedy.js
code without incurring performance pitfalls as it is often the
case in full JavaScript.

Besides the language restriction, Speedy.js requires an in-
creased programming discipline for the performance-specific
functions, since memory safety is relaxed to achieve the
highest possible performance: Array indexes must always be
valid within the boundaries, as array boundary checks are
omitted. Uninitialized memory must not be read, as corre-
sponding checks are also removed. Moreover, type casts are

1The complete list of supported language features is available on the
project’s wiki [16].

11

Accelerate JavaScript Applications by Cross-Compiling to WebAssembly VMIL’17, October 24, 2017, Vancouver, Canada

unchecked and should therefore never fail. Of course, the
omission of these checks impacts memory safety. However,
as the Speedy.js code is executed in isolation by the Java-
Script engine, a faulty application cannot access the code of
another JavaScript application or system program and thus
cannot corrupt other programs (apart from terminating or
blocking the entire JavaScript engine in the worst case). We
regard this relaxation reasonable, as the performance-critical
parts are usually designed with particular care and perfor-
mance has highest priority: Marking functions as Speedy.js
thus implies an explicit opt-out of this memory safety guards.

The Speedy.js functions eventually compile to WebAssem-
bly, a machine-close intermediate language that runs in all
major browsers as well as Node.js, and has near-native perfor-
mance [10].2 WebAssembly is also less affected by browser-
specific JIT optimizations [6, 32].
A further limitation of our current programming model

is that the arguments and result values of Speedy functions
are copied and the functions cannot effect side-effects on
memory shared with the remaining JavaScript code. This is
due to the current WebAssembly standard that is based on
separated (and thus isolated) memory spaces. WebAssembly
only supports passing of primitive values. Speedy.js emulates
the support for passing arrays and objects by transitive serial-
ization and passing the snapshots across the call boundaries.
However, reference equality is maintained for objects passed
by the same call or result. Moreover, the accumulated size of
all allocated objects per Speedy.js entry function invocation
is limited because garbage objects are not yet reclaimed in
our runtime system until the entry function exits.3

3 Cross Compiler
The compiler driver of Speedy.js orchestrates the compila-
tion process. It compiles the Speedy.js functions from a Type-
Script input file to WebAssembly. Furthermore, the compiler
generates stub functions allowing to call Speedy.js functions
transparently from TypeScript. The compiler uses a fork [17]
of the official TypeScript version that has support for the
base type int. The fork allows the compiler to generate more
efficient code for integer computations.

Figure 1 shows the compilation pipeline for a single Type-
Script input file. At first, the TypeScript compiler is used to
parse the source code and type check the program. It is a
prerequisite for the following steps that the input program
contains neither syntax nor typing errors. If this is not the
case, the compilation halts immediately. The directly suc-
ceeding steps work with the parsed TypeScript AST and can
be separated into two pipelines:

2The latest versions of Chrome, Edge, Firefox, and Node.js support Web-
Assembly by default or as an experimental feature. The experimental version
of Safari supports WebAssembly.
3The 32-bit WebAssembly standard defines 2 GBs as the maximum memory
size that we also allow to exploit.

.ts

TypeScript

Code Gen
TypeScript
Transpiler

LLVM

Binaryen

.wasm .js

AST AST

.bc

.s

loads

Figure 1. Speedy.js compilation pipeline

• The left pipeline compiles the Speedy.js functions to
WebAssembly by transforming the TypeScript AST to
a control flow graph, optimizing it using LLVM [13],
and transforming it to a stack machine — as such Web-
Assembly is defined. Finally, Binaryen [3] is used to
perform WebAssembly specific optimizations and cre-
ating the WebAssembly module.

• The right pipeline replaces the TypeScript implemen-
tations of Speedy.js functions in the transpiled output
with stubs containing the glue code allowing a trans-
parent integration into JavaScript/TypeScript applica-
tions.

The following paragraphs explain the separate compila-
tion steps.

Code Gen The code generator is the frontend of the cross
compiler. It translates the input program to the LLVM [12]
assembly language (IR) by traversing the AST and generating
the corresponding instructions, basic blocks, and control flow
edges for each node. The IR is a Static Single-Assignment
(SSA) [2] based representation of low-level operations. The
code generator first creates stack based allocations for local
variables and uses the LLVM mem2reg pass to transform the
IR in pruned SSA form — as advised in the LLVM documenta-
tion [13]. The IR code is saved in a temporary LLVM bitcode
file (.bc) for further processing.

12

VMIL’17, October 24, 2017, Vancouver, Canada Micha Reiser and Luc Bläser

LLVM The compiler driver uses the LLVM toolchain [12]
for linking the program against the Speedy.js runtime li-
brary4 and performing compile-time optimizations. The of-
fline optimization permits to perform memory- and time-
intense optimization which a JIT compiler cannot because
of its limited resources and stricter runtime requirements.
In a next step, the LLVM WebAssembly backend trans-

forms the optimized LLVM IR to a WebAssembly module
in text format. A WebAssembly module is the counterpart
of an object file for a natively compiled application and is
either represented in human readable text format or com-
pact binary format. This step uses the text format, as it is
the only currently supported format of the LLVM backend.
Part of this step is the transformation of the used register to
local variables because WebAssembly is defined as a stack
machine. The LLVM backend reduces the number of local
variables by using register coloring before the transformation.
Finally, the WebAssembly module is stored in a temporary
file (.s) using the text format.

Binaryen The Binaryen toolchain [3] is the compiler back-
end. It performs WebAssembly specific optimizations in the
same way as a traditional compiler backend for the target
architecture. Furthermore, it transcodes the WebAssembly
module from text format to the binary format. The result of
this step is the final, binary encoded WebAssembly module
(.wasm) containing the Speedy.js functions.

TypeScript Transpiler The TypeScript transpiler is part
of the right compilation pipeline and hooks into the Type-
Script emitter generating the transpiled JavaScript output.
It generates the glue code needed to call Speedy.js func-
tions transparently from regular TypeScript code. Listing 2
shows an excerpt of the transpiled output for the isPrime
example.5 The transpiler includes the Speedy.js runtime en-
vironment (line 1) and parameterizes it with the path to the
WebAssembly module and the compilation options affect-
ing the runtime behavior (line 6). The runtime environment
provides commonly used functions for integrating Speedy.js
into a JavaScript environment, e.g. loading theWebAssembly
module from disk or remote.
The transpiler further replaces the Speedy.js entry func-

tions with stubs (the isPrime function on line 13). The stub
loads the WebAssembly module by using the functionality
of the runtime environment (line 14) and forwards the call
to the implementation in the WebAssembly module as soon
as the module is loaded (line 17). The stub also adds the
necessary casts and serializations for values passed as call
arguments, and values returned by Speedy.js entry functions
to the stub implementation (line 18, casts the result to a
4The Speedy.js runtime library implements the JavaScript built-in types.
5The listing omits the Speedy.js runtime environment, which embeds
Speedy.js into TypeScript applications, for brevity. Furthermore, some tem-
porary variables have been introduced so that the code fits nicely into a
single column.

1 function __moduleLoader(wasmUri, options) {

2 // ... Speedy.js runtime environment

3 return loader;

4 }

5
6 var loadWasmModule_1 = __moduleLoader(

7 "./isPrime-spdy.wasm",

8 {

9 // ... runtime parameter such as stack and

initial heap size

10 }

11);

12
13 function isPrime(value) {

14 var loaded = loadWasmModule_1();

15 return loaded.then(function(instance_1) {

16 var exports = instance_1.exports;

17 var result_1 = exports._isPrime(value);

18 var casted = result_1 === 1;

19 loadWasmModule_1.gc();

20 return casted;

21 });

22 }

23
24 async function main() {

25 const prime = await isPrime(10000);

26 console.log("isPrime 10000: " + prime);

27 }

Listing 2. Excerpt from the transpiled JavaScript output
for the isPrime example

boolean). The stubs further calls the garbage collector before
returning the result to release all heap allocated memory
(line 19). The Transpiler omits non-entry Speedy.js func-
tions from the JavaScript output as these are only callable
from Speedy.js functions. On the contrary, Speedy.js instance
methods are not omitted from the output as class instances
can be passed between Speedy.js and TypeScript. Therefore,
instance methods can be invoked from Speedy.js and reg-
ular TypeScript as well. The output of the transpiler is a
JavaScript file that can be executed in the browser or using
Node.js.

4 Runtime System
The Speedy.js runtime system consists of a runtime library
implementing the built-in JavaScript objects and a runtime
environment seamlessly embedding Speedy.js into TypeScript
applications.

Runtime Library The runtime library implements the es-
sential built-in types and global objects of the JavaScript
standard. Most notably, it implements dynamically sized ar-
rays, the Math object, and operations for type coercion. The

13

Accelerate JavaScript Applications by Cross-Compiling to WebAssembly VMIL’17, October 24, 2017, Vancouver, Canada

library is realized in C++, with a focus on compactness and ef-
ficiency rather than completeness. Supporting all TypeScript
features is unreasonable since some, like eval or Proxies,
require a JIT compiler to be efficiently realized.

The runtime library implements the memory free routine
that releases all allocated heap objects at the end of the exit
of each top-most Speedy.js function. Implementing a full
garbage collector is not intended since a WebAssembly pro-
posal exists for exposing the JavaScript engine’s garbage
collectors [7, 10, 21, 27]. Besides, such a collector signifi-
cantly increases the size of the runtime library and needs
to be environment-agnostic to determine the right time for
performing a collection. For example, in a browser, it is de-
sired to run the collection in between the rendering of two
frames and while the UI-thread is idle. In a WebWorker or
for Node.js, other criteria apply. Therefore, Speedy.js will
use the proposed garbage collector of the host environment
as soon as the standard is available.
The runtime library is compiled using Emscripten6 [31]

and is statically linked against the user program at compile
time.

Runtime Environment The runtime environment inte-
grates Speedy.js into TypeScript applications which incor-
porates: the loading and instantiating of the WebAssem-
bly module, providing and managing the memory of the
Speedy.js application, and serializing values passed across
language boundaries. The runtime environment loads the
WebAssembly module for the first called Speedy.js function
and instantiates it. Like a process, each WebAssembly in-
stance possesses a linear memory [10]. The runtime envi-
ronment creates the linear memory during the initialization
of the WebAssembly module and enlarges it whenever the
Speedy.js application runs out of heap memory. The linear
memory is further accessed by the runtime environment to
pass objects and arrays between JavaScript and Speedy.js
since this is not yet natively supported by the WebAssembly
standard. The serialization logic for objects is as follows: The
runtime environment allocates a new object on the heap of
the WebAssembly instance if a JavaScript object is passed as
an argument to a Speedy.js function. It recursively copies the
values of the JavaScript object to the allocated Speedy.js ob-
ject. Finally, the pointer to the heap allocated object is passed
to Speedy.js. The inverse logic applies for object pointers
returned by Speedy.js functions. In this case, the runtime
environment creates a new JavaScript object and recursively
fills it with the values of the Speedy.js object. The implemen-
tation ensures that the created object is an instance of the
corresponding JavaScript class. The (de-)serialization logic
applies equally to arrays.

6Emscripten is a C(++) to WebAssembly compiler.

Table 1.Description of the performance evaluation test cases

Case Description

arrayReverse Computes the reverse of an array with
10’000 elements 999 times.

fib Computes the Fibonacci number of 40.
isPrime Tests if the prime number 231 − 1 is prime.
mergeSort Sorts an array of 10’000 double elements

using the merge sort algorithm.
nsieve Counts the prime numbers in the range of

2 to 39’999 using the sieve of Eratosthenes.
simjs Generates one thousand random numbers

using the SIM.js library [24].
tspDouble Nearest neighbor based traveling salesman

problem solver for the test data of Tanza-
nia [23].

tspInt The same case as tspDouble but uses inte-
ger instead of double coordinates.

5 Evaluation
This section evaluates the performance of Speedy.js based
implementations relative to regular TypeScript. The perfor-
mance is evaluated by benchmarking the test cases listed in
the table 1.

The tests have first been implemented using regular Type-
Script7 and were then ported to Speedy.js by only replacing
unsupported language features, but without performing any
optimizations. This process showed that almost no alterna-
tions to the TypeScript implementations were necessary. The
most notable modification was the refactoring of the SIM.js
library [24] to use classes instead of prototypes.
Figure 2a shows the results of the benchmark when run-

ning in Firefox.8 Each bar represents the relative perfor-
mance of Speedy.js compared to the regular TypeScript im-
plementation in percent where a value greater than 100%
indicates a speedup of the Speedy.js based implementation
and a value smaller than 100% a slowdown.9 These results
show that using Speedy.js improves the runtime performance
and can even lead to a speedup as high as a factor of four.
The performance of the fib, simjs, and tspInt tests improve
7The tests are transpiled to ECMAScript 5 to ensure that all JavaScript
engines have good support for optimizing the used language features.
8Experiments were performed on a MacBook Pro Mid 2014 with a 3 GHz
Intel Core i7 processor and 16 GB RAM running MacOS Sierra. The used
browser versions are Firefox 53.0 and Chrome 59.0.3071.86. For Speedy.js
implementations, the overall runtime is measured including the invocation
of the Speedy.js implementation from JavaScript code, the runtime of the
Speedy.js implementation and the returning of the result to the JavaScript
code.
9The absolute figures of the benchmark are available at https://goo.gl/
tBPm7t.

14

https://goo.gl/tBPm7t
https://goo.gl/tBPm7t

VMIL’17, October 24, 2017, Vancouver, Canada Micha Reiser and Luc Bläser

because WebAssembly has distinct operations for integer
computations whereas TypeScript only has a single numeric
data type. The performance of the arrayReverse, mergeSort,
and nsieve tests improve mainly because of the omitted array
boundary checks. This relaxation of the safety constraints
simplifies the control flow of the generated code and, as a
result thereof, facilitates function inlining which enables
even further optimization. The runtimes of the isPrime and
tspDouble tests are scarcely improved by using Speedy.js
because the Firefox JIT compiler is sophisticated enough to
determine that the numeric operations of the isPrime test
always have integer results, and for the tspDouble test, that
all array boundary checks can be eliminated. The runtimes of
the test cases are nearly constant and, in average, the margin
of errors are almost identical between the TypeScript (2.2%)
and Speedy.js (1.9%) implementations.
Figure 2b shows the results of the same tests run on

Chrome. The results of the arrayReverse, fib, isPrime and
nsieve tests remarkably differ from those of Firefox. There
are three possible causes for these discrepancies:

1. The runtimes of the TypeScript based implementation
— used as baseline — vary between the two browsers
because the JIT optimizations are distinct for each
browser. This is the cause for the discrepancies of the
isPrime and nsieve tests. The runtimes of the Type-
Script implementations differ by 80%, respectively 65%
across the tested browsers.

2. The runtimes of the Speedy.js based implementation
differ between the tested browsers as it is the case
for the fib test. The runtimes of the TypeScript imple-
mentation are almost identical on Chrome an Firefox
but the runtimes of the Speedy.js implementation dif-
fer by 22%. This difference is caused by the fact that
web browsers use the JavaScript engine as WebAssem-
bly VM. Therefore, the Speedy.js performance depends
upon how well a browser’s JIT compiler supports Web-
Assembly [10].

3. Neither are the results for the TypeScript based im-
plementation nor the one using Speedy.js consistent
across different browsers. This applies for the arrayRe-
verse test (TypeScript 81% difference, Speedy.js 62%
difference).

In average, Speedy.js based implementations have a more
consistent performance across browsers (17% difference)
than the ones using regular TypeScript (31% difference). The
performance of Speedy.js should become more consistent
since it can be assumed that the browsers are improving
their WebAssembly support [32].
To sum up, the results evidently show that the use of

Speedy.js significantly improves the performance of Type-
Script applications while only requiring slight changes to
the code. The speedup depends on the actual use case and
might, in some cases, result in a slowdown. In these cases, a

more consistent performance across different browsers can
still outweigh the slowdown observed in another browser.

6 Related Work
Although WebAssembly is a relatively new technology, a
growing number of compilers supporting WebAssembly as
compilation target exist [1, 4, 22, 29, 30]. These compilers —
like Speedy.js — use WebAssembly as compile target to bene-
fit from the ubiquitous presence of the browser platform, the
near-native, and predictable performance that WebAssembly
offers. The main difference lies in the use case. Speedy.js
targets JavaScript projects written in TypeScript that intend
to accelerate performance-critical code by compiling to Web-
Assembly. On the contrary, the existing compilers aim for
projects where most of the application is written in the spe-
cific source language, and JavaScript is only used where it is
needed to embed the application in the browser environment
or to provide a JavaScript API (e.g. for a library).
StrongMode [19], or SaneScript [15, 18], is a proposal

from Google that defines a more restrictive subset of EC-
MAScript 6 with the intent to improve performance and per-
formance predictability by removing behaviors, which are
common performance or correctness pitfalls. StrongMode
is selectively enabled for specific functions or classes. Thus,
StrongMode follows the same idea as Speedy.js — improving
the performance of web applications — by allowing an op-
tional opt-in. The main difference is that Speedy.js goes one
step further and introduces some acceptable relaxations of
safety constraints of JavaScript to bring out the best possible
performance. A second difference is that StrongMode is de-
signed to be part of the ECMAScript standard and, therefore,
runs in the JavaScript engine, whereas Speedy.js compiles to
WebAssembly and uses a custom runtime implementation.
This difference is rooted in the implementation decision of
Speedy.js to use WebAssembly to achieve a cross-platform
implementation in a relatively short time. Google stopped the
work on StrongMode at the beginning of 2016 [20] mainly
because ECMAScript 6 — on which StrongMode is based —
still performs considerably slower than ECMAScript 5 [8].
LLJS [5] is a typed dialect of JavaScript that offers a C-

like type system and manual memory management. It al-
lows writing efficient, GC pause-free applications that are
compiled to JavaScript. Speedy.js, on the contrary, provides
automatic memory management to be more familiar to Type-
Script developers allowing easier adoption. Furthermore,
LLJS compiles to JavaScript whereas Speedy.js uses Web-
Assembly as the compilation target.

7 Conclusion
The importance of JavaScript steadily increased since the
web became a ubiquitous application platform. However, it’s
performance is insufficient for several compute-intense ap-
plications, even though the JavaScript engines remarkably

15

Accelerate JavaScript Applications by Cross-Compiling to WebAssembly VMIL’17, October 24, 2017, Vancouver, Canada

464%

297%

107%

155%

403%

122%
98%

140%

ar
ra
yR
ev
er
se fib

isP
rim
e

m
er
ge
So
rt

ns
iev
e

sim
js

tsp
Do
ub
le
tsp
In
t

0

100

200

300

400

500
sp
ee
du
p,
T
S
is
10
0%

(h
ig
he
r
is
be
tte
r)

(a) Firefox

102%

345%
323%

130%

199%

108% 100%
138%

ar
ra
yR
ev
er
se fib

isP
rim
e

m
er
ge
So
rt

ns
iev
e

sim
js

tsp
Do
ub
le
tsp
In
t

0

100

200

300

400

500

sp
ee
du
p,
T
S
is
10
0%

(h
ig
he
r
is
be
tte
r)

(b) Chrome

Figure 2. Speedups of the Speedy.js implementations compared to regular TypeScript implementations per browser.

improved in recent years. This paper presented Speedy.js, a
selected subset of JavaScript/TypeScript designed to acceler-
ate performance-critical functions. It seamlessly integrates
into regular TypeScript code and the emitted JavaScript can
be used by any plain JavaScript application too. To achieve
the highest possible performance, we relax certain memory
safety conditions in JavaScript and require the programmer’s
discipline not to violate them. As our cross compiler sup-
ports most of the central JavaScript language features, it is
often sufficient to only add the "use speedyjs" directive
to enable the Speedy acceleration. Since Speedy.js compiles
to WebAssembly, it runs in all major browsers as well as in
Node.js.
The evaluation shows that compiling compute-intense

operations with Speedy.js results in a remarkable speedup
for most test cases — sometimes up to a factor of four. It’s
cross-browser performance exhibits less fluctuations than in
ordinary JavaScript engine execution. It can be expected that
the performance gets even more predictive with the improv-
ing WebAssembly implementation by the web browsers.

Speedy.js shows that the performance for compute-intense
web code can be significantly increased by only imposing
minimal language restrictions and conventions. Therefore,
it might be worth considering to natively support a typed,
performance-optimized subset of JavaScript with relaxed
safety guarantees in the browser to allow to speed up specific
application portions when needed.

8 Availability
The source code of the runtime and the compiler are available
on GitHub [16] under the MIT license.

References
[1] 01Alchemist. 2017. TurboScript. (2017). https://goo.gl/9uHnL4
[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers:

Principles, Techniques, and Tools. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.
[3] Zakai Alon. 2017. Binaryen. (2017). https://goo.gl/4Pk5Kw
[4] Alexey Andreev. 2017. TeaVM. (2017). https://goo.gl/sDMWyV
[5] Michael Bebenita. 2017. LLJS. (2017). https://goo.gl/9kIua4
[6] Lin Clark. 2017. What makes WebAssembly fast? (2017). https:

//goo.gl/20JjFq
[7] Lin Clark. 2017. Where is WebAssembly now and what’s next? (2017).

https://goo.gl/M7nq91
[8] Kevin Decker. 2017. Six Speed. (2017). https://goo.gl/b1Kg7b
[9] Katelyn Gadd. 2017. ilwasm. (2017). https://goo.gl/Z4AeGT
[10] Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan

Gohman, Luke Wagner, Alon Zakai, JF Bastien, Michael Holman, and
Google Mozilla. 2017. Bringing the Web up to Speed with WebAssem-
bly. PLDI17 (2017).

[11] David Herman, Wagner Luke, and Alon Zakai. 2014. asm.js. (2014).
https://goo.gl/sxWVss

[12] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer
Society, Washington, DC, USA, 75—-.

[13] LLVM Project. 2017. LLVM Tutorial. (2017). https://goo.gl/DCSU2v
[14] Mozilla. 2017. ARE WE FAST YET? (2017). https://arewefastyet.com
[15] Axel Rauschmayer. 2015. Google SoundScript: faster OOP for Java-

Script. (2015). https://goo.gl/mZaFSJ
[16] Micha Reiser. 2017. Speedy.js. (2017). https://goo.gl/kbzKLn
[17] Micha Reiser. 2017. TypeScript with Int Support. (2017). https://goo.

gl/BtPPj9
[18] Andreas Rossberg. 2015. Experimental New Directions for JavaScript.

(2015). https://goo.gl/YQknPp
[19] Andreas Rossberg. 2015. Strong Mode Proposal. (2015). https://goo.gl/

wOb9ry
[20] Andreas Rossberg. 2016. An update on strong mode. (2016). https:

//goo.gl/1I2eIz
[21] Andreas Rossberg. 2017. GC Extension. (2017). https://goo.gl/Jce6eu
[22] The Rust Core Team. 2016. Announcing Rust 1.14 - The Rust Program-

ming Language Blog. (2016). https://goo.gl/UqCp72
[23] University of Waterloo. 2017. National Traveling Salesman Problems.

(2017). https://goo.gl/D6VULu
[24] Maneesh Varshney. 2011. SIM.JS | Discrete Event Simulation in Java-

Script. (2011). http://www.simjs.com/
[25] Luke Wagner. 2016. WebAssembly Browser Preview. (2016). https:

//goo.gl/Ar5lvG

16

https://goo.gl/9uHnL4
https://goo.gl/4Pk5Kw
https://goo.gl/sDMWyV
https://goo.gl/9kIua4
https://goo.gl/20JjFq
https://goo.gl/20JjFq
https://goo.gl/M7nq91
https://goo.gl/b1Kg7b
https://goo.gl/Z4AeGT
https://goo.gl/sxWVss
https://goo.gl/DCSU2v
https://arewefastyet.com
https://goo.gl/mZaFSJ
https://goo.gl/kbzKLn
https://goo.gl/BtPPj9
https://goo.gl/BtPPj9
https://goo.gl/YQknPp
https://goo.gl/wOb9ry
https://goo.gl/wOb9ry
https://goo.gl/1I2eIz
https://goo.gl/1I2eIz
https://goo.gl/Jce6eu
https://goo.gl/UqCp72
https://goo.gl/D6VULu
http://www.simjs.com/
https://goo.gl/Ar5lvG
https://goo.gl/Ar5lvG

VMIL’17, October 24, 2017, Vancouver, Canada Micha Reiser and Luc Bläser

[26] Luke Wagner. 2017. WebAssembly consensus and end of Browser
Preview. (2017). https://goo.gl/cdxlGI

[27] WebAssembly Community Group. 2017. Features to add after the MVP
- WebAssembly. (2017). https://goo.gl/Lo5ILA

[28] WebAssembly Community Group. 2017. WebAssembly Specification.
(2017). https://webassembly.github.io/spec/

[29] Daniel Wirtz. 2017. AssemblyScript. (2017). https://goo.gl/d8oxVr
[30] Alon Zakai. 2011. Emscripten: An LLVM-to-JavaScript Compiler. In

Proceedings of the ACM International Conference Companion on Object

Oriented Programming Systems Languages and Applications Companion
(OOPSLA ’11). ACM, New York, NY, USA, 301–312. https://doi.org/10.
1145/2048147.2048224

[31] Alon Zakai. 2017. Emscripten. (2017). http://emscripten.org
[32] Alon Zakai. 2017. Why WebAssembly is Faster Than asm.js. (2017).

https://goo.gl/5iTDI6
[33] Alon Zakai and Robert Nyman. 2013. Gap between asm.js and native

performance gets even narrower with float32 optimizations. (2013).
https://goo.gl/5PZ2jK

17

https://goo.gl/cdxlGI
https://goo.gl/Lo5ILA
https://webassembly.github.io/spec/
https://goo.gl/d8oxVr
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1145/2048147.2048224
http://emscripten.org
https://goo.gl/5iTDI6
https://goo.gl/5PZ2jK

	Abstract
	1 Introduction
	2 Programming Model
	3 Cross Compiler
	4 Runtime System
	5 Evaluation
	6 Related Work
	7 Conclusion
	8 Availability
	References

