
Parallel Code Smells: 
A Top 10 List

Luc Bläser

Hochschule für Technik Rapperswil

Multicore@Siemens
8 Feb. 2017, Nuremberg



Code Smells

 Symptoms in code

□ Indicators of potential design flaws

 Partly curable by refactoring

□ Restructuring without change of behavior

 Until now, focus on sequential OO

□ E.g. Huge classes, too many parameters, down casts

2



Parallel Code Smells

 Focus on concurrency and parallelization

□ By the example of .NET and Java

□ Also applicable for other languages

 Personal collection

□ Gained by code reviews in industry

□ Last 5 years, prioritized by relevance

3



4

The Top 10 List

Earlier presentations: OOP 2017, Parallel 2016, Heise Developer July 2016



1. Partly Synchronized Class

 Synchronized and unsynchronized externally 
accessible members within the same class

5

class BankAccount {
private int balance;

public int getBalance() { return balance; }

public synchronized void deposit(int amount) {
balance += amount;

}

public boolean withdraw(int amount) {
if (amount > balance) { return false; }
balance -= amount;
return true;

}
}

synchronized

unsynchronized

unsynchronized

Java



Analogous in .NET

6

class BankAccount {
private readonly object sync = new object();

public int Balance { get; private set; }

public void Deposit(int amount) {
lock (sync) {

Balance += amount;
}

}

public bool Withdraw(int amount) {
if (amount > Balance) return false;
Balance -= amount;
return true;

}
}

synchronized

unsynchronized

unsynchronized

C#



Problem: Half Thread-Safe

 Only concurrent Deposit/Deposit is thread-safe

 Other combinations not

7

Threads

Bank
Account

DepositWithdraw

Threads

Bank
Account

get BalanceDeposit

Data Races & Race Conditions



Cure: Proper Architecture

 Which threads access which objects?

 Defined coherent usage per class/object

8

Bank
Account

Bank

Bank
Account

Bank
Account

...

Concurrent Confined

synchronized unsynchronized



2. Nested Locking Through Method Calls

 Synchronized method directly or indirectly calls a 
synchronized method

9

class BankAccount {
private int balance;

public synchronized void deposit(int amount) {
balance += amount;

}

public synchronized void transfer
(BankAccount target, int amount) {

balance -= amount;
target.deposit(amount);

}
}

lock this
lock target

Java



Hidden Nested Locks

10

Thread 1
a.transfer(b, 10);

Thread 2
b.transfer(a, 100);

lock a
lock b

lock b
lock a

T1 locks a
T2 locks b
T1 wants b
T2 wants a

Deadlock



Same Problem in .NET

11

class BankAccount {
private readonly object sync = new object(); 
private int balance;

public void Deposit(int amount) {
lock (sync) { balance += amount; }

}

public void Transfer(BankAccount target, int amount) {
lock (sync) {

balance -= amount;
target.Deposit(amount);

}
}

}

lock this.sync
lock target.sync

C#



Cure: Proper Architecture

 Where are locks acquired and in which nested order?

 Avoid nested locks

 Or ensure a linear ordering

12

Lock [0] Lock [2] Lock [3]

Lock the accounts 
only by increasing 
number

Account
#0

Account
#1

Account
#2

Account
#3



3. Try-and-Fail Resource Acquisition

 Repeated lock attempts without blocking or with 
timeouts

13

a.acquire();
while (!b.acquire(TIMEOUT)) {

a.release();
a.acquire();

}

Starvation

Solution: Prefer blocking synchronization primitives

Java



4. Use of Explicit Threads

 Starting explicit threads

14

new Thread(() -> compute()).start();

Poor scalability:
=> Too many threads: out of memory

Java



Cure: Tasks Instead of Threads

 Management in a thread pool

□ Task = potentially parallel execution

□ Limited amount of worker threads

□ Scales well, recycles threads

15

future = CompletableFuture.runAsync(() -> compute());

Java (Common Fork Join Pool)

task = Task.Run(Compute);

C# (.NET TPL)



5. Thread Pool Task Dependencies 

 Tasks await conditions of other tasks

□ Exception: Joining sub-tasks is okay

16

threadPool.submit(() -> {
condition.await();
...

}); threadPool.submit(() -> {
...
condition.signal();

});

Deadlock or Scalability Issue

awaits

Java



Task Wait Dependencies

 Deadlock in Java: limited amount of worker threads

 Inefficient in .NET: TPL slowly adds threads

17

Task

Task

Task
Task

Taskawaits

awaits
Worker Thread

Task Queue

Solution: Task continuations



6. Fire and Forget

 Launching tasks without later awaiting their end or 
result

18

CompletableFuture.runAsync(() -> { 
...

});

Various issues

Java

Task.Run(() -> { 
...

});
C#



Problems with Fire And Forget

 Exceptions in task are ignored

□ In Java and .NET since version 4.5

 Application may stop before task end

□ .NET TPL and Java ForkJoinPool use daemon threads

CompletableFuture.runAsync(() -> {
…
throw new RuntimeException();

} ignored

CompletableFuture.runAsync(() => {
…

…
}

sudden end



7. Uber-Asynchrony

 Rampant asynchrony down to the smallest method

20

async Task TranslateAsync() {
var input = await ReadAsync();
var output = await ProcessAsync(input);
await SaveAsync(output);

}

async Task SaveAsync(Data data) {
foreach (var item in data) {
await InsertAsync(item);

}
}

async Task InsertAsync(Item item) {
...

}

C#



Unnecessary Complexity

 Unclear, many thread switches

 Synchronous logic, run it asynchronously as a whole

□ Exception: if UI operations happen within the methods

21

void Translate() {
var input = Read();
var output = Process(input);
Save(output);

}

void Save(Data data) {
foreach (var item in data) {
Insert(item);

}
}

await Task.Run(Translate)



8. Monitor Single Wait / Single Signal 

 Wait in monitor without loop

 Single signal

22

synchronized(this) {
if (full) wait();
queue.add(x); 
notify();

}

synchronized(this) {
if (empty) wait();
var x = queue.remove(); 
notify();

}

Java



Common Monitor Pitfalls

 Check wait condition repeatedly

□ while (full) wait();

□ Other threads can overtake the signaled thread 
(signal and continue)

 Multiple wait conditions => signal to all

□ notifyAll();

□ A treads of the wrong condition may be waked up
(non-empty vs. non-full)

 Same applies to .NET!

23



9. Atomic, Volatile, and Yield

 Atomic instructions

 Volatile variables

 Thread yield, spin locks

24

var value = balance;
if (value >= amount) {

Interlocked.Add(ref balance, -amount);
}

C#



Lock-Free Programming

 Complex, error-prone, often inefficient

□ Memory model expertise is mandatory

 Unnecessary in application software

□ Exception: Low-level algorithms/data structures

25

var value = balance;
if (value >= amount) {

Interlocked.Add(ref balance, -amount);
}

Read without 
memory fence

if and Add are 
not atomic

Wrong



10. Finalizers Accessing Shared State

 Finalizers accessing shared resources

26

public class Block {
public Block() {

Cache.NofBlocks++;
}

~Block() {
Cache.NofBlocks--;

}
}

Data Races & Race Conditions

C#



Analysis: Finalizer

 Finalizer run concurrently to the application

 Proper synchronization is needed

27

Cache

Finalizer 
Thread

Application
Thread

~Block() Block()



Conclusions

 Code smells for parallel/concurrent aspects

□ Raising awareness for frequent design flaws

 Examples for Java and .NET

□ Generally, same problems in other languages

 There exist more code smells

□ Everyone may collect

 No absolutism

□ Not every smells denotes an error

28



Thank You for Your Attention

 Contact

□ Prof. Dr. Luc Bläser
HSR Hochschule für Technik Rapperswil
lblaeser@hsr.ch

□ HSR Concurrency Lab

• http://concurrency.ch

□ Microsoft Innovation Center Rapperswil

• http://msic.ch

mailto:lblaeser@hsr.ch
http://concurrency.ch/Training
http://msic.ch/

