Persistent Oberon
Language Specification

Luc Blaser
Institute of Computer Systems
ETH Zurich, Switzerland
blaeser @inf.ethz.ch

The programming language Persistent Oberon is tamgwn of Active Oberon [Gut97,
Reali02] with institutionalized support of data gistence. Modules constitute the
intrinsic persistent roots of this language, repnéisg state-full singleton instances with
conceptually infinite lifetime. A module is autonealy loaded and initialized by the
system exactly once, when it is used for the firse, either by the user or another loaded
module importing this module. Thereafter, the medstays permanently alive and
survives all subsequent system restarts. As a qaesee, the entire data state of
modules is automatically persistent. Naturallyerehces also belong to this persistent
state and by default, remain valid at system redtnce, all objects that are transitively
reachable from modules are persistent.

As the persistent state should always be availatdeconsistent way when the system
is resumed after an interruption or failure, thegsam execution has to necessarily
reflect the states of consistency. For this purptdse language features the concept of
transactions, which define statement sequences dhatge the program from one
consistent state to another. In Persistent Obexamprmal statement sequence can be
defined as a transaction. All modifications, whete performed by the execution of a
transaction (including the code of directly or meditly called procedures), are either
completely applied or not at all. During the undiméd transactions, these changes are
only temporarily valid and are discarded at a systgerruption. A transaction may also
execute statement sequences which are again defisettansactions, leading to a
scenario of nested transactions [Moss85].

The following language specification describes tlev or changed concepts of
Persistent Oberon, as extensions to the underlyioive Oberon language report
[Reali02]. The complete syntax specification of gtent Oberon is summarized in
Appendix A.

1 Data Longevity

1.1 Syntax of Types

Figure 1 shows the modified EBNF-syntax of typeghaittribute supporRefAttr, called

reference attributes, are the attributes denoting the semantics ofereate to a declared
type. The reference semantics of a type are qugiBed on the outermost level where
the type of elements in a syntactic construct nmestlefined, i.e. the type definition of

variables or fields but also the element-type of aray type and the type of the
referenced element of an explicit pointer type. Téference attributes are written in front
of the element-type whose reference semantics fede Types with reference
semantics are object-, pointer, procedure- andgd&etypes, where the reference of a
delegate points to the object associated with gtegadite and a procedure-reference refers
to the procedure’s module. This syntax of refereattebutes prohibits the reference
semantic to be directly attached with a declarge tgnd thus, emphasizes orthogonal
lifetime-definition of types.

The attributes appearing right after the tokens ARRRECORD, OBJECT or
PROCEDURE give semantic information inherent thelaled type and are not related
with reference semantics.

VarDecl = IldentList "’ RefAttr] Type.
Type = Qualident
| ARRAY [ArrTypeAttr] ConstExpr {',’ ConstExpr}] & [RefAttr] Type
| RECORD [RecTypeAttr] ['(* Qualident ‘)] [Fieldlst] END
| POINTER [PtrTypeAttr] TORefAttr] Type
| OBJECT [ObjAttr] ['(* Qualident ‘)] [IMPLEMENTS Qualident] {DeclSeq} Body]
| PROCEDURE [ProcTypeAttr] [FormalPars].

AttrSet ={"ident {," ident} ‘}".

RefAttr = AttrSet. // reference attributes, the default is PERSISTENT
ArrTypeAttr = AttrSet. // array type attributes

RecTypeAttr = AttrSet. // record type attributes

PtrTypeAttr = AttrSet. // pointer type attributes

ObjAttr = AttrSet. // object type attributes

ProcTypeAttr = AttrSet. // DELEGATE is a predefinattribute

FieldList = FieldDecl {';’ FieldList }.

FieldDecl = [IdentList ‘" RefAttr] Typel].

Figure 1. Attributes for type and reference semantics

1.2 Reference Attributes

A reference of a type is semantically classified tbg annotated reference attributes
(RefAttr), with the following predefined attribute idendfs:

PERSISTENT The reference is callastsistent.
TRANSIENT The reference is calldéchnsient.
WEAK The reference is callagkeak.

As per default, a referencepersistent if none of these attributes is annotated with the
element-type definition. Rules governing refereattgbutes are listed below:

(1) At most, one of these attribute identifiers canuised perRefAttr. A reference
must be either persistent, transient or weak.

(2) RefAttr can only be annotated for a type that basicaltyagents a reference type,
i.e. object-, pointer-, procedure- or delegate-typtherwise the value type would
be associated with reference attributes.

In Figure 2, the use of reference attributes idireed. A new reference type must be
declared without reference attribute y&f B) and the reference attribute can only be
annotated where the type is used for an element,(B). If no reference attribute is
specified on the element-site, the default refezesmmantics is persisteni C).

TYPE
A =OBJECT ... END;
B = POINTER TO ARRAY 8 OF {TRANSIENT} A;
C = ARRAY 4 OF A;

VAR
v: {TRANSIENT} A; (* {TRANSIENT} OBJECT .. END *)
w: {PERSISTENT} A; (* {PERSISTENT} OBJECT .. END *)
x: A; (* {PERSISTENT} OBJECT .. END *)
y: {WEAK} B;
(* {WEAK} POINTER TO ARRAY 8 OF {TRANSIENT} OBJECT .. END *)
z: C; (* ARRAY 4 OF {PERSISTENT} OBJECT .. END *)

Figure 2: Use of reference attributes

1.3 Assignment Compatibility of Reference Types

The reference semantics are part of the type aabiay, field, array-element, or the
referenced element of an explicit pointer. It may dither declared explicitly using
reference attributes or implicitly to be persistdmnt omitting the reference attribute. In
the following, we use the term variable as repregese for all these element kinds. Each
type declaration forms a user distinct type. Vdaalof a reference type can be assigned
to variables of the same type or of a reference,typat differs only in the reference
semantics for the first indirection. In case ofedgltes, the first indirection is the
associated object instance of the delegate. D&sgat only assignment-compatible if
the signature and the reference attributes ofatimpeters match exactly. Figure 3 gives
examples of valid and incompatible variable assigmis

TYPE
A = OBJECT .. END;
VAR
v: {PERSISTENT} A;
w: {TRANSIENT} A;
x: {TRANSIENT} POINTER TO {PERSISTENT} A;
y: {TRANSIENT} POINTER TO {WEAK} A;
z: {PERSISTENT} POINTER TO {PERSISTENT} A;
v =w; w =v;(* both ok *)
X =y; Yy = X;(* both invalid because of the second indirection! *)
X =z; z = X; (*both ok *)
Figure 3: Examples of valid and incompatible variable assignments

The syntax of formal parameters of procedure dattar is given in Figure 4. Return
types have no reference attributes and have alwaysient semantics. The types of
arguments in a procedure call, must match exaltytype of the corresponding formal
parameter, if it is a VAR-parameter (call-by-refaze). For parameters with call-by-
value semantics having a reference type, the tyfigecargument and the parameter must
be equal or differ only in the reference semarfocshe first indirection. The rules for
type compatibility concerning parameter passinglarstrated in Figure 5.

ProcDecl = PROCEDURE ProcHead ‘; {DeclSeq} Bodwgrid.
ProcHead =RrocDeclAttr] ['*" | ‘&'] IdentDef [FormalPars].
ProcDeclAttr = AttrSet. // no predefined attributes

FormalPars ='(‘ [FPSection {;’ FPSection}])*{ Qualident].
FPSection =[VAR]ident{’, ident} ‘" RefAttr] Type.

Figure 4: Syntax of procedure declaration

PROCEDURE Foo(a: POINTER TO A; VAR b: POINTER TO, A)
(* aand b areimplicit persistent pointers*)

VAR
X: {TRANSIENT} POINTER TO A;
y: {PERSISTENT} POINTER TO A;

Foo(x, y); (* ok*)
Foo(y, y); (* ok*)
Foo(x, X); (* invalid because of the second argument *)
Foo(y, x); (* invalid because of the second argument *)

Figure5: Type compatibility for procedure calls

1.4 Method Overriding

Whenever methods are overridden in sub-types,dfegence attributes of all reference-
typed parameters must be identical.

1.5 Lifetime of Objects

The reason for the classification of referencee parsistent, transient and weak is to
implicitly denote the lifetime of objects (and otlmointer-typed data), by thginciple of
strongest reachability: The reference chain to an object from a rootrgjvihe longest
lifetime, defines the object’s lifetime. The follavg definitions specify the lifetime of
objects in the presence of transactions.

Definition 1 (Object, Root Element)

An object is a dynamically created instance of a pointer-tygmntaining all the value-
typed data accessible from the instance withouefderncing an indirection. Aoot
element is a module, a stack or a register.

Definition 2 (Current State, Latest Irreversible State)

The current state of an object or root element is all data valuest@ioed in it, inclusive
pointer values, at a given point in time. Tlagest irreversible state of an object or root
element at timet is the latest state, which has been irreversiblynrogted by a
transactioh, before or at timé. The latest irreversible state for objects, whietve just
been created in a running transaction, is not ddfin

Definition 3 (Persistent Objects and Modules)

A module is always persistent. An object is peesistat timet if and only if, it is
reachable by a chain of persistent references omodule, by only considering the
latest irreversible states of objects and root elgmsat time.

Definition 4 (Transient Objects)
A root element, except a module, is always trarisi&n object is transient at tintg if
and only if:

(1) the object is not persistent at titrend

(2) is reachable over a chain of non-weak referefien a root element or an object
having a running activity at timg by considering the current states at tinaad
also the latest irreversible states at tintegether.

Definition 5 (Garbage Objects)
An object, which is neither persistent nor transartimet, is garbage at time

An important requirement is that persistent refeesncannot point to transient roots.
This is guaranteed, since references to the stackmpossible in Oberon.

The previous definitions are illustrated in Figérevith an example of exactly one
running transaction and the absence of activiiiegained in objects. Persistent objects
and modules are only determined using the latestarsible states. Hence, objects are
transient, if they are not persistent and are raalehin the union of the latest irreversible
state set with the current state set. Note, thigictdy which exist in the set of current
states but have no latest irreversible state, hestdeen created by a running transaction.

1.6 Weak References

A weak reference does not force its referencedovlije stay alive during program
execution. Weak references are reséMlifo as soon as the referenced object is deleted as
garbage. Hence, weak references can be reset gbantyin time during execution.
Furthermore, weak references of persistent objgctmodules are set tdlL when the
program or system is restarted.

! In the presence of nested transactions, onlyoirdetvel transactions perform an irreversible cotnmi

—» persistent

----» transient

.............. » Wweak

. persistent roc

transient roc

‘ persistent

object
last irreversible states current states O ggjlscitem

Figure 6: Lifetime of memory objects O garbage

1.7 Persistence of Modules

Modules are persistent and form the implicit rdotspersistence. The latest irreversibly
committed state of a module, including all reachabhlue-typed data, persistent
references and persistent delegates, is permanaiststate will still be present when a
module is reloaded after it has been unloadedter afsystem restart or system crash.
The statement block of a module will only be exeduivhen a module is loaded for the
first time and is not reincarnated from the peesisbbject system.

Since each module has only one instance per syst@oblems of root
synchronizations arising in other systems, wherdtipie instances of a program are
possible, do not occur.

1.8 Persistent Objects

Persistent objects survive program or system tsstmd system crashes. The latest
irreversibly committed state of a persistent obj@et module is available at the next
program reincarnation, except the transient or weékrences contained in the object or
module. Transient or weak references are namedy teblIL at program reincarnation.

1.9 Transient Objects

Transient objects or transient root elements, aliag during program execution and are
discarded on program termination or system crasansient objects correspond to the
instances with reference type in non-persistergarmming languages.

1.10 Garbage Objects

Garbage objects can be deleted by the system gacamtyin time.

1.11 Lifetime of Activities

The Active Oberon programming language feature®aibjthat can have an active
statement block. In fact, for each instance oflgjec having an active statement block, a
thread is launched, which executes the activera@ieblock. During the execution of an
activity, the containing object cannot become ggeb#@\s each persistent object can have
an active statement block, it must be defined wdrethe corresponding thread is also
persistent. Each thread has an associated stacgdteatially holds transient references
to objects. If a thread and its stack would be nm@etsistent in our model, reincarnating a
persistent thread on system restart makes no s&nse,transient references on the stack
would not be valid anymore and, hence, resdtllito Thus, the threads of a persistent
object are defined to be not persistent. Instead the user's decision whether the thread
of a persistent object is manually relaunched agji@m reincarnation.

1.12 Lifetime of Delegates

Persistent delegates in persistent objects susyigeem restarts and failures and can still
be called during future program reincarnations.n$rant delegates are resetNt_ on
system restart. Weak delegates may be reséilltoat any point in time, when the
associated invocation target is disposed by themensystem.

1.13 Initializers

The semantics of object initializers remains undeahn The initializer of an object is
invoked after an object has been created and b#ferebject can be used. The initializer
of a persistent object is not executed when theablg reincarnated.

1.14 Transactions

The concept of transactions is integrated into iBterst Oberon. Each modification that
affects persistence is executed within a transacéither as an explicit ACID-transaction
or an implicit mini-transaction. Furthermore, thapport of nested transactions is
described.

1.15 Syntax of Statement Blocks

The EBNF-syntax for attributing statement blockepwsn in Figure 7, corresponds
mainly to the original Active Oberon syntax. Furtmere, a new stateme®BORT is
provided to permit the abort and rollback of a nagntransaction ABORT is a new
reserved keyword.

StatBlock = BEGIN $tatBlockAttr] [StatSeq] END.
StatBlockAttr = AttrSet.

AttrSet ={"ident {, ident} ‘}".

Statement = [Designator ‘:= Expr

| Designator [‘(* ExprList ‘)]
| IF Expr THEN StatSeq {ELSIF Expr THEN StatS¢g}SE StatSeq] END
| CASE Expr THEN Case {|' Case} [ELSE StatSedyE
| WHILE Expr DO StatSeq END
| REPEAT StatSeq UNTIL Expr
| FOR ident “:=" Expr TO Expr [BY ConstExpr] DQ&Seq END
| LOOP StatSeq END
| WITH Qualident *’ Qualident DO StatSeq END
| EXIT

| RETURN [Expr]
| AWAIT ‘(" Expr ‘)
| ABORT
| StatBlock

]
Figure 7: Attributes for statement blocks, ABORT statement

Additionally to ACTIVE andEXCLUSIVE, there exists a predefined attribute identifier
TRANSACTION, for statement block attributestétBlockAttr) to declare an explicit
ACID-transaction. TheTRANSACTION-attribute cannot be specified together with
EXCLUSVE because a transaction is the more general coticaptan exclusive lock.
The use and semantics of the statement block neosliACTIVE and EXCLUSVE,
remain unchanged.

The statemenfABORT can only be used within a statement block with dttebute
TRANSACTION.

1.16 Exit of a Transaction Statement Block
A statement block with the attribuT®RANSACTION is successfully committed, when the
statement block is exited as follows:

(1) The end of theTRANSACTION-statement block is reached during program
execution.

(2) The RETURN-statement is called within the statenfmdtk.

(3) The EXIT-statement leaves a loop that enclosesTERENSACTION-statement
block.

The TRANSACTION-statement block can also be prematurely exited aaited by
the ABORT-statement or when an unhandled excepicmurs during the execution of
the statement block.

1.17 Explicit Transactions

A statement block with the attribuEERANSACTION, declares all the code within this
statement block to be executed as an transachotuding directly or indirectly called
methods or procedures. The concept of nested thmisa [Moss81] allows it to execute
transactions within other enclosing transactionsnd¢, we must distinguish between
explicit top-level transactions and nested trangast also called subtransactions.

1.18 Explicit Top-Level Transactions

An explicit top-level transaction is an explicit A=transaction, which is not executed
within another transaction and offers the followmgtures:

(1) Isolation: All data that is accessed during the executioaréxplicit transaction
statement block, including directly or indirectlglied methods or procedures, are
isolated from other processes, until the transadgiderminated. Transactions are
only defined to be isolated on the level of readd avrite-operations on data
contained in objects or modules but not for sersamgher operations. We define
transactions to be executed isolated, if the effettead- and write-operations are
the same as it would be in a serial execution oodi¢he transactions, known as
serializability of transactions.

(2) Atomic Commit: When an explicit transaction statement block uscessfully
exited, an atomic commit is performed. First of, alll objects that would be
persistent after the commit are determined. Thes,states of all these objects,
which have been modified or created by the commgttiransaction, are
atomically made permanent.

(3) Atomic Rollback: The statemenABORT or an unhandled exception within an
explicit transaction block, initiates the atomimetof the running transaction and
the exit from the enclosing transaction block. @msaction abort, the backup-
states of all objects and modules modified by thaning transaction are
reconstructed. The objects, created during thetedbdransaction, are discarded.

(4) No External Abort: Apart from system traps or program terminatiorms,
transaction can only be aborted, when ABORT-statement is executed. Each
transaction, whose execution end is reached, neugble to commit. This implies
that optimistic concurrency models and strict twage locking cannot be used
[BHGS87]; because they would lead to deadlockshat twould not be resolved
using unexpected external transaction rollback#jaiad by the transaction
scheduler.

1.19 Nested Transactions

Nested transactions [Moss81], or subtransactiaesexplicit ACID-transactions that are
executed within other (sub)transactions. This cagoplen, if nested statement blocks with
TRANSACTION-attributes are used or if a procedure or methoth va transaction
statement block is called from a running transactidn abort of a subtransaction does
not imply the containing transaction to be aborfBlde updates of subtransactions only
become permanent, if the enclosing top-level tretisa commits. The beginning of a
nested transaction defines a kind of fix-pointlwé state in a transaction, which can be
restored by an abort. The semantics of isolatignafid the exclusion of external abort
(4), remain the same as for explicit top-level sactions.

(2) Atomic Commit: At the successful exit of the transaction stat@nigock, the
modifications are taken over for the enclosing geartion and the information for
a potential rollback of the current transactiondiscarded. The states of the
modified objects and modules are only stored imgifé/, when the enclosing
top-level transaction is committed.

(3) Atomic Rollback: The statemenfABORT restores atomically the states of all
objects modified by the aborted transaction as thiese at the beginning of the
transaction. Additionally, the transaction statetriglock is exited. The same is
true for an unhandled exception within a subtramnsadlock.

It is not possible to concurrently execute multiglébtransactions within the same
containing transaction because nested active staiebhocks are not supported.

1.20 Implicit Mini-Transaction

A write-operation on data of a persistent objeainodule, which is not performed during
a running explicit transaction, is executed as raplicit mini-transaction. The write-
operation of a mini-transaction is atomically cortied with the same semantics like an
explicit top-level transaction. This implies thaher objects may become atomically
persistent by such a write-operation.

A Persistent Oberon Syntax

The original syntax of the Active Oberon is desedtin [Reali02a].

Module = MODULE ident*;’ [ImportList] {Definitior} {DedclSeq} Body ident *." .

ImportList = IMPORT ident [":=" ident] {," idenf":=" ident]} ‘;".

Definition = DEFINITION ident [REFINES QualidentRROCEDURE ident [FormalPars] ‘;'} END ident.
DeclSeq = CONST {ConstDecl ;'’} | TYPE {TypeDecl} | VAR {VarDecl *;'} | {ProcDecl ‘;’}.
ConstDecl = ldentDef ‘=" ConstExpr.

TypeDecl = ldentDef ‘=" Type.

VarDecl = IdentList *:’ RefAttr] Type.

ProcDecl = PROCEDURE ProcHead ‘; {DeclSeq} Bodwrid.

ProcHead =RrocDeclAttr] ['*" | ‘&'] IdentDef [FormalPars].

ProcDeclAttr = AttrSet. // no predefined attributes

FormalPars
FPSection

Type

RefAttr

ArrTypeAttr
RecTypeAttr
PtrTypeAttr
ObjAttr
ProcTypeAttr
AttrSet
FieldList
FieldDecl
Body
StatBlock
StatBlockAttr
StatSeq
Statement

Case
Caselabels
ConstExpr
Expr
SimpleExpr
Term
Factor

Set
Element
Relation
MulOp
AddOp
Designator
ExprList
IdentList
Qualident
IdentDef

='(" [FPSection {;’ FPSection}])*{ Qualident].
=[VAR]ident {",’ ident} ‘" RefAttr] Type.
= Qualident
| ARRAY [ArrTypeAttr] ConstExpr {',” ConstExpr}] OF RefAttr] Type
| RECORD RecTypeAttr] ['(Qualident ‘)] [FieldList] END
| POINTER PtrTypeAttr] TO [RefAttr] Type
| OBJECT ObjAttr] [(Qualident ‘)] [IMPLEMENTS Qualident] {DeclSq} Body]
| PROCEDURERrocTypeAttr] [FormalPars].
= AttrSet. /I PERSISTENT, TRANSIENT, WEAK are predefined
the default is PERSISTENT
= AttrSet. // no predefined attributes
= AttrSet. // no predefined attributes
= AttrSet. // no predefined attributes
= AttrSet. // no predefined attributes
= AttrSet. // DELEGATE is a predefined attribute
=‘{"ident{'," ident} ‘}".
= FieldDecl {';’ FieldList }.
= [IdentList ‘" RefAttr] Typel].
= StatBlock | END.
= BEGIN $tatBlockAttr] [StatSeq] END.
= AttrSet. // TRANSACTION, ACTIVE, EXCLUSIVE are predefinedtabutes
= Statement {';’ Statement}.
= [Designator ‘:= Expr
Designator ['(ExprList ‘)]
IF Expr THEN StatSeq {ELSIF Expr THEN StatS¢g} SE StatSeq] END
CASE Expr THEN Case {|' Case} [ELSE StatSedJE
WHILE Expr DO StatSeq END
REPEAT StatSeq UNTIL Expr
FOR ident “:=" Expr TO Expr [BY ConstExpr] DQ&Seq END
LOOP StatSeq END
WITH Qualident ’ Qualident DO StatSeq END
EXIT
RETURN [Expt]
AWAIT ‘(" Expr ‘)
ABORT
StatBlock

].

= [CaseLabels { ‘' CaselLabels } ‘’ StatSeq]

= ConstExpr ['.." ConstExpr].

= Expr.
= SimpleExpr [Relation SimpleExpr].

=Term {MulOp Term}

=['+"| ‘-] Factor {AddOp Factor}.

= Designator['(‘ExprList’)’] | number | ctester | string | NIL | Set | ‘(‘Expr’)’ | * ‘Factor
=*{ [Element {!,’ Element}] ‘}.

= Expr ['.." Expr].

== <<= > >2 | IN IS,
=*|DIV|MOD | |'&.
=+ || OR.

= Qualident{‘.” ident | T'ExprList']] ‘' | ‘(" Qualident)’ }.
= Expr {',’ Expr}.
= |dentDef {',’ IdentDef}.

= [ident *."] ident.
=ident [*'| *-].

ABORT is a new reserved keyword.

iatttes,

References

[Gut97] J. Gutknecht. Do the Fish Really Need Rent@ontrol? A Proposal for Self-Active Objects in
Oberon. In Proc. of the Joint Modular Languages f@@mce JMLC'97, Hagenberg, March

1997.

[Moss85] J. E. B. Moss. Nested Transactions: Arprapch to Reliable Distributed Computing. MIT
Press, Cambridge Mass, 1985.

[Reali02] P. Reali. Active Oberon Language Reploiititute of Computer Systems, ETH Zurich, March
2002. At http://Iwww.bluebottle.ethz.ch/languagemfpativeReport.pdf

