
Diss ETH No. 17480

A Component Language for
Pointer-Free Concurrent Programming and

its Application to Simulation

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Sciences

presented by

Luc Blaser

MSc. ETH in Computer Science, ETH Zurich

born 3 October 1979

citizen of Luxembourg

accepted on the recommendation of

Prof. Dr. J. Gutknecht, examiner

Prof. Dr. K. Nagel, co-examiner

2007

Abstract

Today's programming languages are still noticeably under­
developed for the construction of well-structured concur­
rent software systems. They typically impose many unnec­
essary and unacceptable restrictions and inconsistencies
due to a multiplicity of different counterproductive con­
cepts. In particular, pointers generally counteract structured
and hierarchical program relations at runtime, while the
support of concurrency remains largely neglected as a
second-class feature in current programming languages.

To improve this adverse situation, we have developed a
new programming language, which directly integrates a
general component notion. Components are only managed
by three fundamental relations: (1) hierarchical com­
position without use of explicit pointers, (2) symmetric
connections with a dual concept of offered and required
interfaces and, (3) communication-based interactions. As a
result of these concepts, the new language enables general
hierarchical encapsulation, client-individual statefull com­
munications, inherent and race-free concurrency, sym­
metric polymorphism separated from code reuse, as well as
hierarchical lifetime dependencies of the components.

The programming language has been implemented
with a runtime system that comprises a small kernel. It
facilitates high-performance concurrency, clearly surpass­
ing existing systems in the scalability and efficiency of
parallel processes. For this purpose, the system features
innovative concepts such as light-weighted processes with
fine-granular stacks and low-cost software-based preemp­
tion, safe memory management without need of automatic
garbage collection.

In order to offer a proof of concepts and demonstrate
the practical suitability, we have applied the new program­
ming language to an archetypical kind of application:
simulation. At the example of a traffic simulation, we can

2

demonstrate that the new language enables a more natural
mapping to the program, with the potential to be distrib­
uted. At the same time, our language offers a substantially
higher perfonnance compared to other sequential or con­
current simulation systems. More concretely, vehicles are
modelled in this case study as self-active instances that all
drive autonomously and concurrently in a virtual time. In
particular, the component structures also support the flexi­
ble and accurate representation of dynamic hierarchical
compositions with vehicle transports. With regard to the
realistic traffic simulation of Greater Zurich, our simulation
runs faster by a factor of three than a traditional simulation
system.

3

Kurzfassung

Was die Konstmktion strukturierter nebenHiufiger Software
betrifft, sind heutige Programmiersprachen noch erheblich
unterentwickeit. Aufgrund der Vieizahl unterschiedlicher
und oft unntitzer Konzepte unterliegen die Sprachen meist
vielen unnotigen Einschrankungen und Inkonsistenzen.
Die Verwendung von Zeigern (Pointers) erschwert im All­
gemeinen die Beschreibung klar strukturierter und hierar­
chischer Programmbeziehungen zur Laufzeit. Ferner bieten
heutige Programmiersprachen nur unzureichende Unter­
sttitzung fur Parallelitat, da NebenHiufigkeit Iediglich mit
schwerfalligen Zusatzkonzepten ermoglicht wird.

Um diese Schwachpunkte zu beseitigen, haben wir eine
neue Programmiersprache entwickeit. Diese Programmier­
sprache basiert auf dem aligemeinen Begriff der Kompo­
nente. Die Verwaitung von Komponenten ist durch drei
grundiegende Beziehungen gekennzeichnet. (1) Hierarchi­
sche Komposition ohne explizite Verwendung von Zeigern,
(2) symmetrische Verkntipfung mit einem dualen Konzept
von angebotenen und eiforderten Schnittstellen, (3) Inter­
aktion durch Kommunikation. Durch die Verwendung die­
ser Konzepte ergeben sich verschiedene vorteilhafte Mog­
lichkeiten. Dazu gehoren die allgemeine hierarchische Ein­
kapselung, separate zustandsbehaftete Kommunikation
zwischen Komponenten, inharente NebenHiufigkeit unter
Ausschluss so genannter Races, symmetrischer PoIy­
morphismus getrennt von der Code-Wiederverwendung,
sowie hierarchische Existenzabhangigkeiten unter den
Komponenten.

Zur Programmiersprache wurde ein Laufzeitsystem
implementiert. Dieses System, welches tiber einen eigenen
Kern verfugt, macht besonders Ieistungsstarke Ausfuhrung
von nebenlaufigen Programmen moglich. Im Vergleich zu

4

anderen Systemen weist das neue Laufzeitsystem eine
deutlich hahere Skalierbarkeit und eine wesentlich schnel­
lere Ausfuhrungsgeschwindigkeit fur parallele Prozesse
auf. Zu diesem Zweck wurden beim Bau des Systems wei­
tere innovative Konzepte verfolgt. Dazu zahlen unter ande­
rem der Einsatz von Leichtgewichtsprozesse mit beliebig
kleinen Stacks und kosteneffiziente, softwarebasierte Pre­
emption sowie eine sichere dynamische Speicherver­
waltung ohne Bedarf eines Garbage-Collectors.

Zur Demonstration der praktischen Einsetzbarkeit der
Konzepte haben wir die neue Programmiersprache fur eine
archetypische Art der Anwendung eingesetzt, nfunlich zur
Simulation: Anhand des Beispiels einer Verkehrssimulation
hat sich gezeigt, dass die neue Programmiersprache eine
natiirlichere Abbildung des Realittitsmodells zum Pro­
gramm ermaglicht. Damit geht ein erhebliches Potenzial
zur Verteilbarkeit einher. Zusatzlich erzielen wir eine sub­
stanziell hahere Ausfiihrungsgeschwindigkeit als andere
sequenzielle und nebenHiufige Simulaticmssysteme. In die­
ser Fallstudie werden die Fahrzeuge als selbstaktive Kom­
ponenten dargestellt, so dass sie aIle autonom und parallel
in einer virtuellen Zeit fahren. Insbesondere erlauben es die
Komponentenstrukturen, dynamische hierarchische Kom­
positionen fiir die Fahrzeugverladung realitatsnah und fle­
xibel zu modellieren. Eine realistische Verkehrssimulation
vom GroBraum Zurich wird mit unserer Simulation urn
Faktor drei schneller ausgefiihrt alsmit einem traditionellen
Simulationssystem.

5

Acknowledgments

I am very grateful to several people who supported me
during this work and helped me to complete this disserta­
tion.

First of all, I would like to sincerely thank Prof. Dr.
Jurg Gutknecht for giving me the opportunity to follow and
realise my ideas within this doctoral thesis. I am indebted
to his continuous support, helpful advice, constructive
feedback and kind encouragement throughout my work. I
also greatly appreciate the comfortable work environment
that was offered to me as well as the freedom given
regarding my working practice.

I am also very grateful to Prof. Dr. Kai Nagel who
kindly accepted to be the co-supervisor of this dissertation
and gave me valuable feedback, support and encour­
agement during my thesis and especially during the case
study on traffic simulation. It was a rewarding experience
to apply my programming language in this research field.

My sincere thanks also go to my colleagues at the ETH
Zurich, namely Dr. Felix Friedrich, Dr. Svend Knudsen,
Daniel Keller, Roman Mitin, Sven Stauber, Thomas Kagi,
Ulrike Glavitsch-Eggler, Dr. Thomas Frey, Dr. Emil Zeller,
Dr. Stefan Muller, Dr. Simon Schubiger-Benz, Andre
Fischer, Raphael Guntensperger, Mazda Mortasavi,
Michael Szediwy, Florian Negele, Alexey Morozov, Dr.
Dennis Majoe, Karel Skoupy and many others. It was an
absolute pleasure to work together with them. We had a lot
of interesting discussions and chats about research and
other topics, not only during the numerous coffee breaks. I
greatly appreciate the feedback on my work that I received
from my colleagues.

During my visit to the TU Berlin and the subsequent e­
mails which followed, I received valuable advice and feed­
back from Martin Rieser, David Strippgen and Gunnar

6

Flotterod. I am very appreciative of their help, whether it
was in explaining the details of traffic simulation
techniques, providing the simulation data, and discussing
interesting ideas for my work.

I would like to also express my gratitude to Ruth
Hidalgo, who helped me with various administrative
questions and complex issues that were often difficult to
resolve. I am also grateful for the administrative support
from Hanni Sommer and Franziska Mader.

In addition, the Swiss Federal Department of the Envi­
ronment, Transport, Energy and Communications (UVEK)
kindly granted permission to use the data for the traffic
simulation.

Furthermore, I am particularly thankful to Dr. Felix
Friedrich, Dr. Svend Knudsen and Nadja Beeli who proof­
read and scrutinised my dissertation before I submitted it to
my supervisors. Roman Mitin also read the dissertation and
provided valuable comments and suggestions for improve­
ment.

Lastly (but of no less importance), I would like to
thank Nadja Beeli, my family and all my colleagues for
their constant encouragement and support.

Luc Blaser

Zurich, September 2007

7

2.2

2.2.1

2.2.2

2.2.3

2.3

2.3.1

2.3.2

2.3.3

2.3.4

Chapter 3

3.1

3.2

Contents

Chapter 1 Introduction 13

1.1 Motivation 13

1.2 Contributions 15

1.3 Outline 16

Chapter 2 State of the Art 17

2.1 Object-Orientation 17

2.1.1 References 18

2.1.2 Methods 19

2.1.3 Inheritance 20

2.1.4 Concurrency 22

2.1.5 Existing Solution Approaches 23

2.1.5.1 Object Encapsulation Models 23

2.1.5.2 Object Lifetime Control 27

2.1.5.3 Concurrency Improvement 29

2.1.5.4 Inheritance Altematives 32

Other Existing Programming Paradigms 34

Procedural Programming 34

Modular Programrning 35

Functional and Logical Programming 36

Existing Component Models 37

Component Systems 38

Architecture Description Languages 39

Dataflow Languages .40

Component-Oriented Languages .41

The New Component Language .42

The Component Concept 44

Component Instances .47

8

3.3

3.4

3.5

3.6

3.7

3.7.1

3.7.2

3.7.3

3.7.4

3.7.5

3.7.6

3.8

Chapter 4

4.1

4.1.1

4.1.2
4.2

4.2.1

4.2.2
4.3

4.3.1

4.3.2

4.4

4.4.1

4.4.2
4.5

4.5.1

4.5.2
4.6

4.6.1

4.6.2

Hierarchical Composition .49

Component Networks 51

Communication-Based Interactions 57

Concurrency 63

Examples 66

Producer-Consumer 66

Pipeline 69

Client-Server 71

Divide-and-Conquer 73

Token Ring 75

Peer-To-Peer 77

Related Work 78

Conceptual Advances 81

Hierarchical Encapsulation 81

The Classical Problems 82

The New Solution 85

Structured Networks 89

The Classical Problems 89

The New Solution 93

Dynamic Plug-Ins 95

The Classical Problems 95

The New Solution 97

Symmetric Polymorphism 98

The Classical Problems 99

The New Solution 102

Flexible Reuse 103

The Classical Problems 104

The New Solution 106

Safe Concurrency 107

The Classical Problems 108

The New Solution 114

9

4.7

Chapter 5

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

5.2.9

5.2.10

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.4

Chapter 6

6.1

6.2

6.3

Chapter 7

7.1

Implementation Independence 118

The Runtime System 119

Overview 122

User Interactions 122

Compilation 123

Target Machine 124

Implementation Language 125

Component Support 126

Program Loader 128

Memory ModeL 128

Process Stacks 129

Dynamic Collections 131

Communication Mechanism 132

Memory Deallocations 133

Concurrency Model 134

Software-Based Preemption 136

Smart Scheduler 137

Interoperability 138

Micro KerneL 139

Multi-Processor Management 139

Generic Memory Management.. 140

Interrupt Management. 141

Heap Implementation 142

Concurrency Implementation 143

Related Work 144

Technical Advances 147

Degree of Concurrency 150

Execution Performance 152

Absence of Garbage Collection 156

Case Study 159

Project Overview 160

10

7.2 New Traffic Simulation 160

7.2.1 Virtual Time 161

7.2.2 Main Structure 163

7.2.3 Road Network 163

7.2.4 Road Links 166

7.2.5 Cellular Automata 166

7.2.6 Queue-Based Links 167

7.2.7 Cars 168

7.2.8 Route Planning 170

7.2.9 Car Transports 172

7.2.10 Entire Simulation 176

7.3 Classical Traffic Simulation 177

7.4 Evaluation 179

7.4.1 Modelling 179

7.4.2 Performance 180

7.5 Related Work 184

Chapter 8 Conclusions 187

8.1 Conceptual Results 187

8.2 Technical Results 189

8.3 Open Problems 190

8.4 Further Directions 191

Appendix A Language Report 194

A.1 Notation 194

A.2 Program 194

A.3 Components 195

A.4 Interfaces 197

A.5 Component Implementations 200

A.6 Types 206

A.7 Statements 209

A.8 Expressions 218

A.9 Designators 220

11

A.10 Virtual Time 223

A.11 Language Symbols 225

A.12 Predefined Features 225

A.13 Syntax Summary 227

Appendix BUser Cornmands 230

Appendix C Deadlock Exclusion 233

C.1 Rules 233

C.2 Correctness Proof 235

Appendix D Digital Material 238

Bibliography 239

12

Chapter 1

Introduction

1.1 Motivation

During recent decades of computer science, we can observe
a predominant trend towards programming languages,
which possess an increasing number of features of ever
increasing abstraction and complexity. However, pro­
grammers are often poorly supported with suboptimal con­
cepts and have to fmd workarounds to the various artificial
restrictions and contradictions, which inevitably arise from
the growing amount of features in programming languages.

One of the gravest deficiencies and the root cause of
many problems in current languages is, according to our
analysis, the fact that pointers (or references) still establish
the main concept for describing dynamic program struc­
tures. Their expressiveness is much too weak to accurately
organise well-structured relations between objects, such
that programs are commonly based on underspecified and
vulnerable structures. In fact, the presence of references
forms the main reason for the missing support of
hierarchical encapsulation in today's languages.

We also observe that the increasing need of con­
currency can not be adequately satisfied by current pro­
gramming models. They typically offer only poor and
unsafe support of concurrency, which has been added with

13

hindsight to the classical procedural model, instead of con­
stituting a primary property of the programming paradigm.

Unfortunately, attempts at a sustainable solution to
such fundamental problems have become increasingly
seldom in our time, whereby prevalent main-stream
languages are often considered as "definitive" foundations
and "innovation" is becoming more and more limited to
adding new features of questionable value and patches on a
suboptimal model.

Our motivation is hence to overcome this situation, by
rigorously revising the conceptual basis of current pro­
gramming languages. We believe that with the right choice
of a sufficiently general but still simple paradigm, the arti­
ficially caused problems of the prevalent programming
systems could be inherently abandoned.

The aim of this dissertation was therefore to develop a
new programming model, which enables more powerful
and structured construction of concurrent software systems.
The specific goals of the project were:

1. The invention of programming concepts, which
solve the existing structural problems of pointers
and improve the support of concurrency.

2. The design of a concrete programming language
which integrates this model with appropriate con­
cepts.

3. The implementation of the new language with an
innovative runtime system.

4. The demonstration of the advantages of the new
language and runtime system. An extensive case
study should give evidence of the suitability of the
language.

To fulfil these goals, we have designed and implemented a
new programming language, which directly integrates a
general and substantially novel concept of components.
Three fundamental relations govern components in this
language:

14

1. Hierarchical composition without use of explicit
pointers

2. Symmetric connections with a dual concept of
offered and required interfaces

3. Communication-based interactions

Designed for fully-fledged programming, the new language
is solely based on components and features only high-level
concepts for their implementation. Using a clear separation
of interface and implementation, we also allow terminal
components (which are not composed of other components)
to be implemented in any other programming language. We
thus gain the flexibility to also support any special (e.g.
machine-close) implementations in our programming
model.

1.2 Contributions

The main contributions of this dissertation can be summa­
rised as follows:

1. The description of a refined programming model
and a new language for the structured con­
struction o.fmodern concurrent programs. Using a
general notion of components, the language
advances the state of the art in programming, by
enabling (a) general hierarchical encapsulation, (b)
accurate dynamic structuring without use of
explicit pointers, (c) hierarchically controlled
component lifetimes, (d) fIrst-class and safe con­
currency, and (e) flexible polymorphism without
loss of expressiveness and practicability.

2. The implementation of an innovative runtime
system for the efficient support of the new pro­
gramming language. The system excels in (a) a
very high degree of concurrency, (b) low-cost
parallel processes, (c) safe hierarchical memory
management without use of a garbage collector,

15

and (d) the rigorous elimination of classical
system artefacts, which have become redundant in
our model (this includes virtual memory manage­
ment). The system comprises a micro kernel that
clearly outperforms existing systems with regard
to execution speed and scalability of concurrency.

3. The report on a case study with the new com­
ponent language, demonstrating the practicability
of the concepts and the system. By means of a
traffic simulation, we can show how the language
conveys more natural modelling and can offer a
higher performance than a classical solution.
Thereby, we can also show that the new pointer­
free structural concepts of the language provide
sufficient expressiveness and flexibility for real
programmmg.

1.3 Outline

The main part of this dissertation is organised in the
following chapters:

Chapter 2 analyses the current state in programming lan­
guages and identifies the most fundamental
problems.

Chapter 3 describes the new programming language and
its underlying component notion.

Chapter 4 shows the conceptual advances of the new lan­
guage by means of various examples.

Chapter 5 presents the new runtime system for the pro­
gramming language.

Chapter 6 explains the technical advances of the runtime
system, supported by experimental evaluations.

Chapter 7 reports on the case study with the language and
system.

Chapter 8 concludes this work and identifies open research
directions.

16

Chapter 2

State of the Art

The need for developing a new programming language is
usually something that arises in circumstances of (1) a new
type of application or (2) an unsatisfactory state of the art.
This is also true in our case, where we find that today's
predominant programming languages lack the adequate
support for structured and parallel programming. In a thor­
ough examination of the current programming languages,
we have identified various fundamental problems that are
summarised in this chapter. We thereby not only focus on
object-orientation but also consider other important pro­
gramming models as well as existent solution proposals for
the recognised problems.

2.1 Object-Orientation

Without doubt, object-orientation [DN66] is currently the
most popular .programming paradigm in industry and
research, being incOlporated in nearly all modem pro­
gramming languages, such as C# [CS06], Java [GJS+OO],
c++ [Strous98], Zonnon [GZ05], Active Oberon [Gut97,
Mul02, Reali04], Eiffel [Meyer97], or Smalltalk [ST98].
Other interesting but less popular object-oriented languages
were developed: SELF [US87] for example does not
engage class-based object creation but only allows repli­
cating objects from previous instances (so-called proto-

17

types). In fact, object-orientation was originally invented
with Simula I [DN66] for the purpose of simulation pro­
gramming. Due to this focus, the model proved to be very
general, as it encouraged programmers to directly represent
the concrete or abstract units of our natural world as analo­
gous instances (with an intrinsic memory and behaviour)
within a program. Unfortunately, the fundamental concept
of self-active objects of Simula I and Simula 67 [DMN68]
was not incorporated in succeeding popular object-oriented
languages, limiting these languages to primarily sequential
programming. Though widely regarded as a high-level
paradigm, object-orientation is in general strongly influ­
enced by the classical procedural model. Many concepts
have been directly adopted from the old model though not
always making sense in the new context of objects. In the
following analysis, we identify (1) references, (2) methods
and, (3) inheritance as three such elementary concepts that
are too low-level and cause many fundamental problems in
object-orientation:

2.1.1 References

References (or pointers) form semantically very weak con­
structs for describing relations between dynamically
created object instances. Similar to "goto" jumps, arbitrary
interlinking of object instances is promoted with refer­
ences, leading to an object graph of non-hierarchical
shapel. Though typed languages may impose restrictions on
the type of referenced objects, it is possible to arrange
arbitrary structures among different instances with a com­
patible object type. Clear program structures and general
encapsulations remain unsupported: any abstraction that
consists of a dynamic structure of sub-elements is not
adequately representable as a hierarchically composed

1 C.A.R. Hoare also unequivocally criticises the unstructured nature of
references and calls their introduction in high-level programming
languages a step backwards [Hoare73, page 20].

18

object. Instead, this has to be forcibly modelled as a
reference-linked conglomerate of elementary object
instances, constituting an undifferentiated part in the over­
all and flat object graph.

As a consequence of these underspecified object
relations, incautious reference copying may quickly lead to
incorrect program dependencies (also known as aliasing
problems [Hogg91, Alm97, NVP98, CPN98, MP01,
AC04]). In turn, object exchangeability and reusability are
also decisively impaired due to the implicit dependencies
of outgoing object references which are unspecified in
object interfaces2

• A further negative artefact of references
constitutes the need for automatic (and heavy-weighted)
garbage collection for memory-safe runtime support3

•

Rather designed as a provisional solution to prevent
dangling pointers and memory leaks, a garbage collector
can naturally not relieve the programmer from caring about
object disposal: The programmer still has to keep in mind
that references to unneeded objects have to be explicitly set
to null, if they are transitively reachable from a static root4

.

The programmer's control over the object lifecycle is artifi­
cially limited to the initialisation and main use phase, since
the finalisation of objects can only be started by the
collector and entails various conceptual problems5

.

2.1.2 Methods

Methods fail the realisation of a true message passing
paradigm, as they in fact only constitute conventional pro-

2 Every element of public visibility in the object may be considered as part
of the object's interface.
3 Garbage collection already involves particularly high complexity and
costs in an application with somewhat time-critical execution [JL03].
4 Static roots are represented by static fields in Java, C#, or C++ and by
modules in Active Oberon.
5 The invocation time and order of finalisation is undefined. Moreover,
conceptual paradoxes such as resurrection have to be considered
[RichOO).

19

cedures (with an implicit dynamic link6 to the containing
object). Contrary to a message passing abstraction, methods
are directly executed by the invocating process. With
regard to concurrency, methods are severe obstructions as
they unnecessarily block the invocator during their entire
execution, instead of running at the expense of the actual
containing object. To diminish these limitations, "asyn­
chronous method calls" are often introduced in languages.
However, this concept is not more than a bulky patch on
the classical procedural model instead of establishing a
natural and general notion of message passing.

With (synchronous and asynchronous) method calls, an
object is also incapable of maintaining an arbitrarily long
statefull interaction with multiple clients individually.
Instead, an object can only hold a client-specific context
during a method invocation. The pattern of a method for a
client-specific interaction is however oversimplified,
having only one parameterised input followed by one
possible output (with generally only one value). To work
around this, one has to separately store the client state out­
side the object in the case of more complex interactions, if
the object should not be unreasonably limited to one client
interaction at the same time. For this purpose, an extra
helper object has to be usually assigned to a client or the
state has to be explicitly re-established by passing it as a
parameter to the methods7

•

2.1.3 Inheritance

The main object-oriented mechanism for type poly­
morphism, which is known as inheritance and is strongly
influenced by classical record extension, enforces an
unnecessary (and often unjustified) hierarchisation and

6 The dynamic link is also known as the implicit SELF- or this-reference.
7 For example, the iteration over a data collection has to be usually
realised by a client-associated iterator object, or a synthetic rider object
that is exchanged between server and client.

20

classification of object types at compile-time. Unlike a non­
hierarchical polymorphism, objects can not be represented
by a set of equally important facets, without artificially pre­
ferring some facets as sub-types of others. Inheritance also
unsuitably combines the two antagonistic concerns of
polymorphism and code reuse, often resulting in mutual
imports of different classes. A special object class, which
needs to be inherited from a general class for the purpose of
type polymorphism, should not be obligated to also inherit
the general implementation of the super-class, as the
special class I code is naturally more specific than that of the
general class8

•

Moreover, inheritance is either confined to single­
inheritance [CS06, GJS+OO] or may entail cumbersome
conflict resolution in the case of multiple-inheritance
support [Strous98, Meyer97]. Keeping in mind that types
were initially invented to separate between disjoint sets of
data values and the thereon applicable operations, it is
unclear why multiple-inheritance should allow to specialise
multiple base types, that were initially classified to be
separate. It seems that this rather promotes imprudent
classifications and unifications of types, without really
gaining any conceptual benefit. Inheritance is also suscep­
tible to dangerous encapsulation breaches. By permitting a
sub-class to override methods of the base class9

, the imple­
mentation of a class may be altered (with or without
intention) or even corrupted by the implementation of any
existing or future sub-class (known as fragile base clalis
problemlO

). Generally, the correct development of a sub-

8 The example of a rectangle and square shows this contradiction: a square
is a geometrical special-case (modeled as a sub-class) of a rectangle but
on the other hand, should not inherit the general rectangle implementation
(with the two variables length and width).
9 To avoid accidental method overriding, C# requires a double-side
agreement by the virtual and override keywords in the super- and sub-class
respectively.
10 See also [Szy98, Section 7.2].

21

class requires a total knowledge of the base class imple­
mentation, which should however, not be exposed.

2.1.4 Concurrency

Besides the abovementioned problems, another significant
shortcoming of object-orientation is the inadequate support
of concurrency. While objects originally featured an
intrinsic activity in Simula I [DN66] and Simula 67
[DMN68J, this important characteristic unfortunately
disappeared over time and objects became reduced to only
passive instances. This step backwards to sequential pro­
gramming no longer allows programmers to model daily­
life abstractions, which feature their own concurrent life­
time scenario (such as persons or vehicles)l1. Though
modern languages like Active Oberon [Gut97, Reali04] and
Zonnon [GZ05] revive the concept of self-active objects,
the object notion was, since its invention, not designed to
convey truly disentangled interactions between the
autonomous and self-active instances. Instead, ordinary
procedure calls are generally employed to describe object
interactions, an old mechanism that was renamed method
invocation or message passing. With this mechanism, the
internal process of one active object to synchronously enter
into the execution domain of arbitrarily other objects, such
that the execution of a process is generally not only located
within one instance.

These historical legacies are responsible for the rather
poor support of concurrency encountered in today's main­
stream languages. Instead of supporting a well-structured
concurrency, current languages only offer threads that
operate (from outside) on the passive object instances
without any clear restriction or control. The fact, that the
set of potentially (directly or indirectly) accessed objects of
a thread are not explicitly specified in a program, is

11 Not even Beta [MMN93], the most recent language from the same
origin as Simula, incorporates the concept of object-centric activities.

22

particularly harmful since threads can only interact
implicitly via shared objects. With such an approach, con­
currency is obviously doomed to be unsafe, inherently
prone to uncontrolled concurrency overlapping (race con­
ditions) or hard-to-detect deadlocks. Due to the conceptual
weakness, it is not surprising that languages often do not
integrate threads as a fIrst-class programming concept but
rather hide them as an extra feature in a separate program­
ming library.

2.1.5 Existing Solution Approaches

Naturally, many researchers (and practitioners) have
addressed the aforementioned problems of object­
orientation and have proposed corresponding solutions.
However, references, methods and inheritance are
generally not considered as the root problems but these
approaches rather focussed on improving specific negative
implications of these concepts. In this section, we review
the most important existing solution approaches in this
research fIeld.

2.1.5.1 Object Encapsulation Models

The missing support of hierarchical encapsulation of object
structures and the associated problems of uncontrolled
referencing represent an acute matter in current research.

A variety of ownership models [Hogg9l, Alm97,
NVP98, CPN98, MPOl, BROl] have been invented, to
allow the specification of ownership relations in classical
reference-linked object structures. More concretely, an
object may aggregate a set of objects as its ownership and
prohibit external accesses to these instances. While earlier
ownership models define this relation implicitly [Hogg9l]
or associate it with types (Balloons [Ahn97]), modern
ownership models [NVP98, CPN97, MPOI, BROI] use
reference modifiers and type parameterisation, to specify
and propagate ownership dependencies in a network of
objects. Figure 2-1 to 2-3 give samples of such techniques
but also indicate inconsistencies in certain ownership

23

models. The main problem of the ownership models is
however that the mechanisms are too technically intricate,
involving numerous different modifiers (such as rep, norep,

readonly etc.) and many hard-to-understand and unnatural
rules (mostly defined as a type system). The encapsulation
of object structures is also not directly visible from the
program code but only implicitly defined by the modifiers
along a chain of references. As the models are often too
restrictive, exceptions may alleviate the encapsulation. For
example, read-only references [MPOl] may be allowed to
break into an encapsulated structure and read internal data
(though this data is probably encapsulated not to be read).
Alternatively, references in procedures of external objects
may be allowed to temporarily access protected objects
(dynamic aliasing [Hogg9l, Alm97]). The most decisive
disadvantage is however, that conventional unrestricted
references still constitute the standard constructs in all
these models, such that the majority of objectli may never­
theless be exposed as part of the system-wide flat object
graph.

A somewhat more flexible but still fairly similar
method is engaged by ownership domains [AC04]. With
this method, objects are allocated in openly declared
domains, which own the contained objects and may grant
explicit access rights to a selective set of other domains.
However, this technique is also relatively cumbersome and
optional. For instance, objects can still be allocated without
policy in the globally shared region.

To enable at least a certain level of encapsulation,
some programming languages permit the static aggregation
of objects with value semantics. For this purpose, object
types are classified into value and reference types (such as
in C# [CS06], or Eiffel [Meyer97]) or the value or
reference semantics are defined at the variable side (such as
in Beta [MMN93] or C++ [Strous98]). This approach is
naturally not general, since dynamically created objects or
structures of reference-linked objects can not be encapsu­
lated.

24

class ElemenkdataOwner> {
dataOwner Data value;

}
class Intermediate {

norep Element<rep> element;
}
norep Intermediate x;

The ownership model of Noble, Vitek and Potter [NVP98]

Summary:
A rep reference specifies that the target object is owned by the reference
holder. This is however only true, if the rep mode is not associated with a
class parameter (e.g. rep ElementType). Otherwise, the declaration denotes
an external owner, which is defined by the argument of the class
parameter. An owned instance can only be accessed by its owner and
instances that also belong to this owner (ownership context). Owned
instances can only refer to instances outside its ownership context with the
arg mode, meaning that the instances are immutable for the referencing
object.
Inconsistency:
It is for example not possible that the nodes of a linear list can be owned
by the same list object. The template mechanism requires that the owner is
specified for all nodes which potentially follow the first node.

class Elemenkrep ElementType> {
rep ElementType next; /* ... */

}
class Collection {

rep Element<rep Element<rep Element <...1...>>> first;
}
var Collection c;

The ownership model of Clarke, Potter and Noble [CPN98]

Summary:
Similar to the previous model, the rep attribute is used to specify that the
current object figures as the owner of a referenced object. By using class
parameters (e.g. dataOwner), the owner information can be propagated.
The keyword norep declares a normal reference without ownership
relation.
Inconsistency:
The exterior object x.element holds a reference to the encapsulated object
x.element.value, although it is not the owner. The complicated type rules
however ensure that x.element is only accessible via the owner x.

&______o!,!:!ej,Pt'5._
1

I 1

x. element 1 x.element.value 1
1 1_____________ 1

Legend: 0 object -+ reference ::::tIl- own~-relation ~-_-_-~ owned stJuc[ure

Figure 2-1. Examples of ownership models

25

The object universe model [MPOl]

Summary:
A rep reference denotes that the target object is owned by the current
reference holder. The owner also indirectly possesses all objects that are
transitively reachable via non-attributed references (peer references) from
this directly owned instance. In this model, the set of objects that are
directly or indirectly owned by an instance is called a universe. It is
ensured that only the owner can have normal references going inside a
universe, while normal references cannot exit a universe. In addition,
readonly references are introduced to cross universe boundaries without
restrictions. The semantic of such references is that they prevent
modifying accesses to the referenced instances.
Inconsistency:
The model does not offer true encapsulation, as read-only references allow
reading information from arbitrary objects, even if they are owned by
another instance.

owned by
Collectionr----

•

class Collection {
rep Element first;
Element last;

}
class Iterator { readonly Element current; }
class Element {

Element next; II peer
int value;

}
class Client { readonly Element lastelement; }

Collection Iterator Client

00
""- -- --.

•: Element •L ~

Legend: 0 object ---to> reference :::::IiJo- owns-relation

- - ... read-only reference

!..-_-_-~ owned structure

Figure 2-2. Example of an ownership model

26

Ownership types for race-free programming [BROlI

owned byl •system.device
1 •

system ltd' f'.sys em. evlce.con 19 1___________ 1

class System<thisOwner> {
Device<self, this> device;

}
class Device<thisOwner, configOwner> {

Configuration<configOwner> config;
}
class Configuration<thisOwner> {}

System<thisThread> system;

Summary:
This model aims to economize synchronization for objects that can be only
referenced by a single thread. This is the case if an object is directly or
indirectly owned by a thread. For this purpose, the first class parameter at
the variable declaration side defines the owner of the referenced object.
The keyword self states that the object has no owner and is globally
shared. The remaining class parameters are used to propagate ownership
information.
Inconsistency:
The thread-local object system.device.config is referenced by the globally
shared object system.device. However, the type system ensures that the
object is only accessible by the same thread.

thisThread

O --I
Legend: object -+- reference =$I- owns-relation !.. _ .. owned structure Dthread

Figure 2-3. An ownership model for multi-threading

2.1.5.2 Object Lifetime Control

Other research focuses on the problem that objects can not
be explicitly deleted in a program (without risk of memory
errors), meaning that not the entire object lifecycle is under
the programmer's control. As a resulting technical problem,
the needed automatic garbage collection generally causes
too high and unpredictable disruptions, which are unac­
ceptable for time-critical applications [JL03].

A real-time garbage collector [Baker78, AEL88,
Baker92, N093, CBOO, BCR03] could help in such a
situation, even though the price in terms of execution per­
formance, memory space reserve, and implementation
complexity is substantial and the gained time guarantees

27

are relatively small12. Nevertheless, a programmer remains
unable to clearly control the end of an object's lifetime.

As an alternative, region-based programming
[BSB+03] can be engaged to reduce garbage collection
overheads. The idea is to define explicit regions in a
program, wherein the objects are allocated and managed.
Regions (and their lifetimes) may be nested or hierarchi­
cally ordered, such that the objects can be directly deallo­
cated at the end of a region's lifetime. This naturally
requires that inter-region references do not lead to regions
with shorter lifetimes. Region-based models have the same
disadvantages as ownership models, which may also be
used to control the lifetime of aggregated objects
(supposing that the exceptions of read-only references and
dynamic aliasing do not exist). On the one hand, the model
is quite technically intricate for a programmer (see Figure
2-4). On the other hand, there are predefined global object
spaces (typically a managed and an unmanaged one), where
a lot of objects may be accumulated due to the restrictive
rules of regions. As a particular danger, the unmanaged
(uncollected) space may contain temporary objects which
are not reclaimable anymore and thus produce memory
leaks.

12 In the best case, the guaranteed worst-case execution time (so-called
mutator utilisation rate) is about half as fast as in a system without
collector [BCR03].

28

The unified ownership and region model [B8B+03]

I
I
1

- - - - __I

region2---------1
: Collection c2 1
1 1
I 1
I 1
I Element 1
1 I
1 1
1 1

_I

I

Data 1
1 1

~------------------~global region immortal (unmanaged)

region1---------,
: Collection c1 I
, I
1 I
I I

1 Element I
I I
I I
I I

_I

I

1 Data
1L __

global region heap (man

)
)

class Data<thisRegion> {}

(RHandle<region1> h1) {
Collection<region1, heap> c 1;
(RHandle<region2> h2) (

Collection<region2, immortale> c2;

II the first type parameter defines the region
class Coliection<thisRegion, dataRegion> {

Element<thisRegion, dataRegion> first;
}
class ElemenkthisRegion, dataRegion> {

Element<thisRegion, dataRegion> next;
Data<dataRegion> data;

Legend: 0 object -.. reference ~-_-_-~ region

Figure 2-4. Region Model

2.1.5.3 Concurrency Improvement

A number of promising programming models could enable
much better support of concurrency in object-orientation.
For instance, the active object model [Gut97] of Active
Oberon [AOS06, MuI02, Reali04] directly embeds con­
currency in the object concept. Contrary to the classical
approach of running separate threads on passive objects,
active objects feature an intrinsic activity that is auto­
matically started on the object creation and allows objects
to act autonomously. This idea is similar to the original
notion of objects as introduced in Simula I, in which
objects were represented as processes [DN66]. To synchro­
nise the object-centric processes, Active Oberon offers an
inbuilt monitor concept [BH73, Hoare74] by supporting
exclusive regions and system-monitored await conditions
[BH73]. However, the processes can only interact
implicitly by operating on shared objects. With the method­
based execution, the dependencies between processes are
generally not sufficiently specified, as they may (directly or
indirectly) operate via method calls on arbitrary other
objects.

29

A natural and clear description of interactions between
active objects can be achieved by a real message passing
paradigm, as known by CSP [Hoare78] or actors [Agha86].
In these models, processes (or actors) directly com­
municate with each other by sending and receiving
messages according to a protocol13 • The common problem
of these models is however that an object (process or actor)
can not communicate with each client individually, but has
to handle the time-multiplexed communications of all
clients simultaneously. The dialog concept of Zonnon
[GZ05] gives a solution to this shortcoming: a client can
explicitly invoke a new dialog with an object, such that a
concurrent service agent runs at the server side and indi­
vidually communicates with the client. However, Zonnon
does not incorporate the dialog concept as the only possible
model of object interaction. Instead, method calls are still
supported as a fundamental concept, such that the afore­
mentioned problems of methods and concurrency remain
existent. Other languages have also integrated the com­
munication paradigm, such as Occam [Occ88], Active C#
[0004], Sing# [FA+06] or JCSP [Welch04]. A special case
is the rendezvous-based communication in Ada95
[Barnes95] that is also based on CSP, though the notation
of communication rather resembles method calls. Instead of
sending and receiving messages in a bidirectional way, a
client needs to call task entries, which have to be accepted
at the server side (the task). Thereby, the client has to wait
until the task entry has been accepted (rendezvous) and the
body of the accept statement in the server has been com­
pletely executed. The latter is particularly unnatural for a
message passing model as it is only necessary because a
task entry may feature output parameters (similar to proce­
dures). Alike other models, an Ada task does also not
maintain a client-specific context in the presence of multi-

13 Contrary to the actors system, cSP uses synchronous communication
channels, i.e. the send statement waits until the message has been received
by the other side.

30

pIe concurrent clients, such that a task usually has to con­
tinuously accept any task entry in order to deal with all
possible interleaving of client interactions.

The concurrency model of Polyphonic C# [BCF04] is
based on a concept of matching synchronous and asyn­
chronous method calls. More specifically, synchronous and
asynchronous method declarations can be combined to a
chord, such that the associated program body is only
executed when all of these methods have been invoked.
The typical scenario is that a synchronous method is
declared in a chord together with one or multiple asynchro­
nous methodsl4

• In this case, the call of the synchronous
method blocks as long as the corresponding asynchronous
methods have not been called (and not been matched with
another chord). Apparently, the asynchronous methods may
be regarded as events that represent preconditions to run the
procedure body of the chord. Consequently, the signalling
of these events is realised by invoking the asynchronous
methods. As the arguments of the asynchronous methods
are directly passed to the chord, a chord allows direct
information exchange similar to message passing without
explicit synchronisation. However, a model of explicit wait
& signal (such as monitors) as well as message passing
would be more natural and clearer than implementing this
paradigm by means of the rather technical concepts of pro­
cedure invocation and matching. As the precondition of a
method execution is not defined with regard to the state of
variables, the handling of a chord usually requires the
launching the asynchronous methods for enabling the next
chord matching. Therefore, the programmer often has to
think in terms of a state machine (the asynchronous proce­
dure calls enabling the transitions), usually leading to
complex program logic.

14 However, a chord may also consist of only asynchronous or only
synchronous method declarations.

31

To reduce concurrency problems such as race
conditions and deadlocks in object-oriented programs,
specific ownership models have been employed [BRO1,
BLR02]. The idea is to require a lock for each globally
shared object, if a procedure potentially accesses the object.
As these models tend to accumulate objects in the conven­
tional globally shared space, locking may be too coarse­
grained and conservative (besides the complexity of these
techniques). To avoid deadlocks, static lock levels have to
be assigned and only acquired in a linear order. In such a
model, fine-granular synchronisation of dynamic object
structures remains unsupported (except specific object
structures, for which static analysis may conservatively
confirm an acyclic shape).

2.1.5.4 Inheritance Alternatives

The best (and most sustainable) solution to the problems of
inheritance would certainly be the replacement of inheri­
tance by a more elaborate concept. An interface support
like in COM15 [Box98, COM06] could enable much more
flexible polymorphism for objects, without enforcing
unnecessary type hierarchies. An object may implement an
arbitrary set of interfaces, which all define equivalent
external representations (often used like a type) of the
objectl6

. This approach also permits a clear separation of
polymorphism and code reuse. An interface can be
provided, without having to inherit a specific implementa­
tion of a base class.

In COM, code reuse can be directly realised by the
general relation of aggregation. A component can expose
interfaces of an aggregated class as interfaces of its own.
The technical difficulty of this model is that not every

15 The fundamental ideas of COM are originated by A. Williams [Wil88,
Wil90].
16 In COM, the designated home interface IUnknown however forms a
primus inter pares with regard to the provided interfaces of a component.

32

component may be aggregated, since a component has to
be explicitly prepared as such by its implementation17.

Alike COM, Zonnon supports no inheritance but only inter­
face polymorphism. For the purpose of reuse, Zonnon has
an extra concept of implementations that define default
interface implementations and can be aggregated as part of
a class implementation.

Another mechanism of code reuse has been proposed
by mixins [BC90], which provide partial implementations
of interfaces within abstract classes. A class can then be
mixed together by inheriting these abstract classes
(assuming the support of multiple-inheritance). Compared
to COM, mixins just form technical helper constructs for
reuse that have no runtime meaning. Recently, traits
[SD+03] have been advertised as another alternative for
code reuse. As a supplement to inheritance, classes can be
composed of traits, with each trait providing a set of
methods by requiring the existence of other methods. As
traits do not necessarily reflect a coherent implementation
of a defined interface and the provided and required
methods are automatically matched on name equalityl8, this
approach promotes rather unstructured merging of code
fragments.

17 This is because the exposed interface must be implemented in such a
way, that it can give information about all interfaces of its outer
aigregating component.
J For instance, if a method is added to a class, the required trait methods
with the same name are automatically rebound to this new method. This
happens even if the names are only accidentally equal.

33

2.2 Other Existing Programming Paradigms

2.2.1 Procedural Programming

A remarkable level of programming power has already
been reached in classical procedural languages (like
Algol60 [Naur60], Pascal [Wirth70], or Ada [Barnes80]).
Based on a clear separation of data structures (stored in
variables) and algorithms (procedures), these languages
offer a powerful and simple programming paradigm that
principally permits solving any programming task
(although there may be a lack of a structuring concept at a
larger program granularity).

For efficiency, concepts were typically chosen with a
rather direct and simple representation to the underlying
machine model. However, this approach also carried the
risk that some concepts were selected as too low-level.
Already in that time, pointers were considered as
problematic [Hoare73], often leading to unstructured and
error-prone interlinking of dynamically allocated data
blocks and frequently provoking severe memory errors, if
not managed by automatic garbage collection.

At the same time, many innovative concurrency
concepts were invented for imperative programming
languages [BH75]. One such elementary concept is the
parallel statement block [Dij65], containing a set of
statements that can all be executed in parallel but have to
be completed at the end of the statement block. Using this
construct, programmers do not have to over-specify a
sequential execution for time-independent statements but
can directly exploit fine-granular concurrency. Thereby, the
constituents of a parallel block may interact over critical
regions [Hoare?1], operating on explicitly declared shared
resources (shared variables [BH72]).

However, hierarchically nested statement-level paral­
lelism is not always suited as general notion of con­
currency. Natural modelling (e.g. real-world simulations)
may rather need decentralised concurrency, driven by

34

autonomously running and concurrently interacting agents
(processes or objects). To describe such scenarios, monitors
[BH73, Hoare74] (based on a module or object notion) and
communication-based interactions [Hoare78] constitute
fundamental concepts.

2.2.2 Modular Programming

For a clear structuring of programs at the level of the
system, modules [Parnas72, Wirth77a, Wirth82, Wirth88]
have proved to be a general and practical concept [WG89].
Statically, a module forms a container of logically coherent
program declarations, grouped together to a system unit of
compilation and deployment. The hierarchical import­
relation thereby enables modules to reuse exported decla­
rations of imported modules. At runtime, a module repre­
sents a singleton instance (with an own variable state) that
is automatically loaded and managed by the system.

Whereas modules establish the sole statefull com­
ponents in classical modular programming languages,
modern such languages [AOS06, GZ05] typically institu­
tionalise both modules and objects. This is because objects
enable abstraction units at a smaller scale than modules. In
contrast to modules, objects can have multiple instances
and do not represent units of compilation, deployment, and
system-managed loading. Due to the conceptual similarities
of objects and modules, it remains however open as to
whether modules and objects do not represent special cases
of a common general component notion.

As for the discussed problem of underspecified
reference structures, the hierarchical module structure can
unfortunately not help. Even though an object class is
declared in a certain module, its instances may be just as
well be created (and used) in any other importing module.
Therefore, an object does not necessarily belong to the
declaration location of its class such that the object graph
remains non-hierarchical. As a result of type polymorphism
by sub-classes and generic pointers, objects can even cycli-

35

cally refer to each other, even though their classes may be
declared in different and hierarchically ordered modules.

2.2.3 Functional and Logical Programming

Functional programming [MT+97, PJ02], in its pure sense,
facilitates powerful descriptive programming by using
hierarchical data values, functional composition, pattern
matching, and type inference. The general type system
allows the use of arbitrary (also recursive) hierarchical tree­
like data values, constructible as a tuple, an alternative, or a
list of another base type. A particular quality of the pro­
gramming paradigm is the inherent ability for concurrency,
as for the evaluation of function arguments. In accordance
with the principle of descriptiveness, concurrency is not an
explicit feature of language but can be internally exploited
by the runtime system of the functional language.

As another example of descriptive programming,
logical languages like Prolog [CR93, Pro195] allow the
implicit specification of logical predicates which can be
derived as true from a set of initial facts and rules, both
defined in horn clauses (according to the closed world
assumption, everything that can not be derived is
considered as false).

Unfortunately, functional and logical programming
languages have not become that widely accepted in
practice. Their applicability is often considered as
restricted, since a program only describes a solution
without explicitly determining the computation process or
the use of a storage space. This also forms the reason why
such descriptive languages have often been diluted to
factual imperative programming models, by introducing
imperative elements such as side-effecting I10-operations19

19 As an alternative to side effects in functional languages, monads
[Wad92] have been suggested to describe a sequential execution in terms
of functions, i.e. the result value of a monad function is an executable
imperative program. Though the descriptiveness of the language may be

36

or the cut-operator in Prolog. As a regrettableconsequence,
the specific underlying evaluation process (e.g. eager or
lazy evaluation in functional languages or the concrete
unification algorithm of Prolog) becomes decisive for the
development of such programs and is frequently used to
control the execution order of side effects.

2.3 Existing Component Models

Software components have been invented as a fundamental
approach towards better software reusability and thus faster
development of new programs [McIl68]. In recent decades,
component-orientation has not only been acknowledged as
a method for reusability but rather as a general abstraction
for structured programming [Szy98]. The model conveys
the continuous decomposition of program complexity in
smaller building blocks called components, which have
openly specified (and thus desirably minimised) depend­
encies. In fact, procedures, modules, and objects have
evolved as most important concrete kinds of components.
Conceptually, a component forms a reusable software unit,
whose implementation should be completely encapsulated
(black box) and whose external dependencies should all be
defined in explicit interfaces. In general, components can
be composed of other ones and can be instantiated (or
replicated) multiple times by the use of a builder tool
(based on a programmatic description or an interactive
graphical system). As we have analysed before, not all
species of components support this ideal equally well. For
example, procedures may have implicit dependencies with
the outer context (implicit use of variables of the outer
static scope); objects may entail unspecified external
dependencies by outgoing references; and modules are
designed as singleton instances.

saved in theory, the character of a monad-based program remams
imperative (namely describing a sequential execution).

37

2.3.1 Component Systems

For large-scaled industrial software construction, a lot of
component systems have become popular. Microsoft COM
[Box98, COM06], Java Beans [JB98], Enterprise Java
Beans (ETB) [MHOO], CORBA [OMG98], as well as the
Microsoft .NET framework [NET06] are but a few
examples of such systems. In all these models, the com­
ponents are not directly supported as an inbuilt language
concept but have to be modelled by the use of specific pro­
gramming frameworks or conventions. The component
notion is rather defined by a standardised component repre­
sentation and runtime infrastructure on the binary level
(COM), on an intermediate language level (ETB and .NET),
or simply, by naming conventions and explicit metadata on
the programming language level (Java Beans). The main
focus is thereby directed on universal deployment and
interoperability, in particular the support of multiple
languages, multiple platforms, or distributed computing.

In all of these models, the component notion
corresponds to the conventional object concept, such that
the same fundamental deficiencies with regard to refer­
ences, methods, inheritance and concurrency exist. The
only exception is COM, which does not integrate inheri­
tance but instead engages symmetric interface poly­
morphism and component aggregation. Moreover, the
COM wiring mechanism20 with ingoing and outgoing inter­
faces could be seen an alternative to references. However,
wiring is unfortunately only engaged for dual call direc­
tions of methods, as used for representing asynchronous
events in the procedural model. Therefore, conventional
references still establish the typical inter-component
relations in COM and in fact, even a wire has to be
represented by an explicit reference21

•

20 See [Szy98], Section 10.3.
21 A wire is established by registering a reference to an IConnection
interface.

38

2.3.2 Architecture Description Languages

Architecture description languages (like UML22
, VHDL23

,

and many others [GA094, BE+94, MD+95, LK+95,
MQR95, SD+95, GMW97, MRT99, A1l97]) are commonly
known to incorporate a more general component notion,
where external dependencies of components indeed have to
be rigorously specified in interfaces. Instead of using
ordinary references, architecture description languages
permit the wiring of component interfaces and hierarchical
compositions. These languages do not form executable
programming languages but are rather only designed for
the formal description and specification of software and
hardware architectures.

Unfortunately, all these languages have a common
decisive limitation for practical use, namely that dynamic
component structures can not be described. The number of
components, as well as the entire wiring topology, is
always static (like a single picture) and can not be defined
at runtime. In some cases [MK96], the number of
components may be fixed by a parameter, which also has to
be statically defined on the (direct or indirect) use-side.
Other architecture description languages [Med96, OMT98]
allow scripts to perform dynamic updates on a statically
specified compositions, by operating from outside on the
internal structures of components. However, such an
approach is not only awkward because it entirely differs
from the usual notation of static compositions but also
because it promotes the exposition of the encapsulated
inner structure of a component.

Moreover, there is no agreement on a clear interface
and wiring concept. Interfaces are generally represented as
either collections of exported and imported methods
(operations and events) [LK+95, SD+95 GMW97, MRT99,

22 See [OMG04], Sections 8.3 and 8.4.
23 See [VHOO], Section 5.

39

OMG04] or alternatively, as low-level communication
ports, which are in most cases only primitive unidirectional
data streams [GA094, BE+94, MQR95, SD+95, VHOO]. In
the case of bidirectional communication ports [A1l97], each
client typically requires a separate interface port for
individual interaction, while a constant or a parameter fIxes
the number of ports. In addition, the wiring mechanism
often necessitates a special construct of connectors to bind
a set of ports by a particular "glue logic" [GA094, LK+95,
SD+95, GMW97, A1l97, MRT99]. The concept of (imple­
mentable) connectors in these languages just unnecessarily
raises the complexity, as a connector also forms a kind of a
component which again maintains connections with com­
ponents. In fact, these second-level connections between
connectors and component\) are then not again represented
as connectors.

2.3.3 Dataflow Languages

Dataflow languages [MSA+85, CPHP87, LabView,
IW+88] have been invented to describe programs as an
implicit or explicit network of data processing nodes.
Descriptive dataflow languages such as SISAL [MSA+85]
are typically based on the functional programming
paradigm, where a program can be internally represented as
a data flow graph. Thereby, any independency in the data
flow graph inherently enables parallelism in the program.
According to the principle of descriptiveness, a program
does neither specify an explicit computation process nor
does it feature an explicit variable state (that can be
changed by assignments). However, this is also considered
as a restriction by many practitioners, who like to directly
control the execution process of their programs. Lustre
[CPHP87] provides a concept of equations and functions
(called nodes) with an inbuilt time axis. As a result, the
programs describe a network of nodes that have a defined
value in each time step. However, the functional nodes
often remain quite low-level due to the elementary input
and output values, such that programs often lack a

40

sufficient level of abstraction. Other data flow languages
are visual [LabView, IW+88] and allow the construction of
programs by means of interactive composition and wiring
of processing nodes. Of course, such visual programs can
only reflect a static picture, meaning that the program is
forcibly limited to a static structure.

2.3.4 Component~OrientedLanguages

Besides architecture description and dataflow languages, a
few other, more practical programming languages [ACN02,
GL+03, LS05] directly integrate a more general component
notion than objects. The common problem of these
languages is however that the inbuilt component concept
still lacks sufficient elaboration.

While some languages [GL+03] can only describe
static component structures, other languages [ACN02,
LS05] remain too strongly influenced by object-orientation
and still rely on ordinary references to express dynamic
component structures. For instance, ArchJava [ACN02] can
not guarantee encapsulation of hierarchically contained
components, since a component may easily pass out refer­
ences that lead to its sub-components. The support of
multiple clients for an interface is also poor, requiring the
programmer to explicitly request a reference to a new port
from a so-called port interface. The recently presented
language Classages [LS05] artificially distinguishes
between three types of interfaces (connectors, mixers,
pluggers), such that a component can only be hierarchically
composed of sub-components which must not have con­
nections among each other. Moreover, the interfaces in
component-oriented languages are generally too low-level,
featuring exported and imported methods for "inverse"
event-driven programming.

41

Chapter 3

The New Component Language

In order to improve the current situation in the field of pro­
gramming, we have developed a new component language
for structured construction of concurrent software systems.
The new programming language is called Composita24 and
has already been previously published in [BHiser06]. By
means of innovation, the language features a directly inte­
grated general component notion that is exclusively
supported by expressive concepts. The highlights of the
new language can be summarised as follows:

• Hierarchical encapsulation
A component is able to hierarchically encapsulate
any static or dynamic structures of components or
program logic of arbitrary complexity, without the
use of explicit references (or pointers).

• Well-controlled structures
With a dual concept of offered and required inter­
faces, components can be connected to networks,
whose structures are always exclusively controlled
by the hierarchically surrounding component.

24 Latin: lingua composita - the well-structured language. In Latin, the
adjective compositus is an established metonym for deliberate structuring.
The noun Composita (neuter nominative plural of compositus) also
characterises the programs written in this language, namely the well­
structured / composed ones.

42

Components never have unspecified external
dependencies.

• Inherent concurrency
All components run fully autonomously and con­
currently, only interacting via message communi­
cation.

• Symmetric polymorphism
Components are represented by an arbitrary set of
independent interfaces, each establishing an
equally important external characterisation of the
component. In total separation of implementation
reuse, a new type system ensures the consistent
handling of polymorphic components.

• Implementation independence
Due to a clear separation of interfaces and imple­
mentation, the language also permits terminal
components, which do not contain sub-com­
ponents, to be implemented in any other pro­
gramming language. This enables flexible and safe
interoperability and leaves the programming
model open for special-purpose implementations
(such as machine-specific code).

Three principles led the design of the new programming
language:

• Simplicity
Provide a minimum set of most general concepts.
The quality of the language is equally determined
by what it provides and what it does not provide.

• Expressiveness
Employ meaningful high-level concepts instead of
limited machine-close abstractions. Do not unify
different concerns in one concept and do not
classify the same concern in different concepts.

• Clarity
Use a syntax notation that is widely accepted for
its clarity and readability.

43

Important inspirations for the new programming language
came from COM [Wil88, Wil90, COM06] and CSP
[Hoare78], as well as from Zonnon [GZ05], Active C#
[GG04] and Oberon [Wirth88]. With this background, we
introduced a series of new concepts (cf. Section 3.8), in
particular the dynamic pointer-free structuring with com­
ponents, the guaranteed and general hierarchical encap­
sulation, as well as the component interaction paradigm
which is solely based on high-level message com­
munication. The following presentation gives an overview
of the programming language. The concepts are inten­
tionally described in an informal way, to clearly focus on
the essential ideas. For a more detailed and technical speci­
fication, the complete language report can be found in
Appendix A.

3.1 The Component Concept

In the new language Composita, a program always is a
component which can be constructed again from an
assembly of components. The hierarchical composition can
be arbitrarily continued in a recursive way. With this
paradigm of stepwise refinement, complex systems can be
built of program units that hide detailed logic from a higher
abstraction level.

A component constitutes a closed program unit at run­
time that encapsulates state (data values and components),
as well as behaviour (interactions and functionality). It may
be used to represent any kind of abstraction, like a subject
(e.g. a person), an active object (e.g. a car), a passive object
(e.g. a road) or an abstract notion (e.g. a route). Com­
ponents are only allowed to have external program depend­
encies over explicitly defined interfaces. An interface
represents an external facet of a component and thus
establishes an explicit interaction point between the com­
ponent and its outer environment. Each component offers
an arbitrary number of own interfaces and also requires an

44

arbitrary number of foreign interfaces that belong to other
external components.

By way of a first example, let us consider a standard
house, which has the external facets of a residence and a
parking space, requiring both electricity and water supplies
from outside. The house may be represented as a com­
ponent, which offers both a Residence and ParkingSpace
interface. In addition, the house requires the foreign
Electricity and Water interfaces from other external com­
ponents. The house component is described by a cmn­
ponent template called StandardHouse, that is shown in the
program code below. The template specifies the offered
and required interfaces, as well as the implementation of a
house component. An arbitrary number of house com­
ponents (called component instances) may be created fi'om
the same component template. One such possible instance
of a house component is depicted by the diagram in Figure
3-1.

INTERFACE Residence; (* ... *)
INTERFACE ParkingSpace; (* ... *)
INTERFACE Electricity; (* ... *)
INTERFACE Water; (* ... *)

COMPONENT StandardHouse
OFFERS Residence, ParkingSpace
REQUIRES Electricity, Water;
(* implementation *)

END StandardHouse;

Residence

ParkingSpace

Electricity

Water

Figure 3-1. A component instance

Clearly, all interfaces of the component have equal rights,
i.e. there is no artificially preferred interface. With regard
to the example, this means that the characterisations of a

45

residence and parking space represent equally important
facets of the house.

The component language supports three fundamental
relations between components:

• Hierarchical composition
Each component can contain an arbitrary
assembly of other component instances, which are
hierarchically encapsulated by the surrounding
component.

• Interface connections
An arbitrary network of components can be built
by connecting the required interfaces of com­
ponents to corresponding offered interfaces of
other components. Each component exclusively
governs the connections between its internal com­
ponents.

• Communication-based interactions
Components can interact via interfaces by
bidirectional message exchange, based on sym­
metric sending and receiving of messages. An
individual message communication channel is
automatically maintained between a component,
which offers an interface, and each component,
which uses the interface.

As the component notion is designed to cover any
conceivable abstraction unit and give higher generality than
the classical component abstractions of objects and
modules, components form the sole building units in the
language.

46

3.2 Component Instances

All components potentially existing at runtime have to be
declared in the program together with an identifier and a
signature. The signature specifies permanent properties of
the component, such as the offered and required interfaces.

As a concrete signature, one can specify the specific
template of which the component is created. For example,
house1 and house2 may be declared as two instances of the
StandardHouse component template:

house1, house2: StandardHouse

In many cases, it is however necessary to declare com­
ponent instances without statically fixing a specific
template. Therefore, a component instance can be also
declared by only postulating a set of offered and required
interfaces for the component. The example below declares
a building component with an abstract signature that lists
the offered interfaces Residence and ParkingSpace and the
required interfaces Electricity and Water.

building: ANY(Residence, ParkingSpace I Electricity, Water)

Using this declaration, the component instance can be of
any component template that fulfils the following require­
ments:

1. The component template (~ffers at least the inter­
faces which are postulated as offered by the
declaration (i.e. Residence and ParkingSpace).
These interfaces are always guaranteed to be
provided by the declared component instance,

2. The component template requires at I1Wst the
interfaces which are postulated as required by the
declaration (i.e. Electricity and Water). These inter­
faces have to be provided by the environment of
the declared component instance, before the com­
ponent's offered interfaces can be used.

47

This dual rule of interface conformance statically ensures
that interfaces can be only used if they are also offered by
the component and, that a component does not maintain
hidden external dependencies via undeclared required inter­
faces. Conversely, it does neither harm if the component
offers more interfaces than declared (and used) nor, if
fewer interfaces are required than effectively declared (and
provided by the environment). Therefore, the following
townHouse component may well be of the StandardHouse
template. Conversely, the oldHouse component can not
represent a StandardHouse as no required Electricity inter­
face is postulated.

townHouse: ANY(Residence I Electricity, Water, CentraIHeating);
oldHouse: ANY(Residence IWater)

A static declaration of component instances is not always
applicable as in some cases, the number of component
instances may be determined only at runtime. Hence, it is
also possible to declare a dynamic collection of component
instances with the same signature. An index, qualified by a
list of comparable data values, thereby allows the dynamic
identification of a component within the collection. For
example, the following declaration defines a collection of
components of the StandardHouse template, requiring a
street number and name to identify an instance.

house[number: INTEGER; street: TEXT]: StandardHouse

With this declaration, the following component instances
may be accessed for example.

house[12, "Market Street"]
house[3, "First Avenue"]
house[100, "Grand Boulevard"]

Of course, we may also define a collection of components
without fixating their specific component template:

house[postaIAddress: TEXT]: ANY(Residence IWater, Electricity)

48

3.3 Hierarchical Composition

A component can be hierarchically composed, by
containing an arbitrary static or dynamic number of sub­
components. The sub-components are fully encapsulated
and exclusively managed by the sUlTounding component,
such that the inner components are completely invisible
and inaccessible outside the super-component.

The program below delineates a hierarchical com­
position with the example of a StandardHouse component,
which contains a garage and two floors as sUb-components
(see Figure 3-2). Variables enable hierarchical com­
positions by representing separate containers, within which
a component instance with a compatible signature can be
stored.

COMPONENT StandardHouse
OFFERS Residence, ParkingSpace
REQUIRES Electricity, Water;

VARIABLE
garage: StandardGarage;
groundFloor, firstFloor: ANY(Rooms IElectricity, Water);

BEGIN
NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor)

END StandardHouse;

Residence

Figure 3-2. Hierarchical composition of components

As a variable is empty by default, a component has to be
first installed within it before the variable can be used. This
can be done by the NEW-statement, which creates a new

49

component within a variable. If an abstract signature is
declared for the variable (ANY-construct), the component
template has to be explicitly specified as second parameter
of the NEW-statement (cf. the last two statements in the
example above). In any case, a possibly pre-existent com­
ponent in a variable is automatically deleted before a new
component is installed in it.

Naturally, a variable is also capable of storing a
dynamic collection of component instances:

VARIABLE room[number: INTEGER]: HotelRoom;
BEGIN
FOR i := 1 TO N DO NEW(room[i)) END

The FOR EACH-statement allows iterating over the
elements of a collection, by assigning a valid index to the
specified variable(s)in each iteration step. This is
especially useful in a dynamic situation where it is not
known at development time, which components all reside
within a collectioll.

FOREACH i OF room DO use room[i] END

As variables are only locally defined in a program scope,
they directly imply a hierarchical lifetime dependency
between the surrounding component and the internal com­
ponent inst:'lnces. This means, if the surrounding com­
ponent is disposed, the contained components are
recursively deleted as well. A component in a variable may
be also explicitly deleted before the automatic disposal on
the end of the surrounding component. In addition, the
language offers the EXISTS-function, which allows to
determine whether a variable is empty.

VARIABLE oldHouse: ANY(House I Electricity, Water);
BEGIN

IF EXISTS(oldHouse) THEN DELETE(oldHouse) END

It should be noted that variables really contain components
and that there are no pointers (or references) involved at the
level of programming language. Of course, dynamic com-

50

ponent structures need to be appropriately organised in the
memory behind the scenes but this is no concern at the
abstraction level of the programming language.

3.4 Component Networks

Components systematically decompose programs into
separated logical parts, which only have explicitly defined
dependencies in the form of offered and required interfaces.
Networks of component instances can be built by
connecting each required interface to one with an identical
name which is offered by another component. The
following example of a small city demonstrates the con­
struction of such a network of component instances. Figure
3-3 visualises the resulting component network of the
program.

COMPONENT HydroelectricPowerPlant
OFFERS Electricity REQUIRES Water; (* ... *)

END HydroelectricPowerPlant

COMPONENT River OFFERS Water; (* ... *)
END River;

COMPONENT SmaliCity;
VARIABLE

house1, house2: StandardHouse;
powerPlant: HydroelectricPowerPlant;
river1, river2: River;

BEGIN
NEW(house1); NEW(house2); NEW(powerPlant);
NEW(river1); NEW(river2);
CONNECT(Water(house1), river1);
CONNECT(Electricity(house1), powerPlant);
CONNECT(Water(house2), river2);
CONNECT(Electricity(house2), powerPlant);
CONNECT(Water(powerPlant), river2)

END SmaliCity;

By means of the CONNECT-statement, the required Water
interface of house1 is for example connected to the offered

51

Water interface of river1. The offered interface is thereby
implied by the first argument of the statement.

Figure 3-3. A static component network

Component networks can of course also be constructed
with a dynamic number of component instances, as
illustrated by the following program fragment and l':<'igure
3-4.

COMPONENT City;
VARIABLE
house[postaIAddress: TEXT]: StandardHouse;
powerPlant: HydroelectricPowerPlant;
river[number: INTEGER]: River;

BEGIN
FOR n := 1 TO N DO NEW(river[n]) END; (* N>=1 *)
NEW(powerPlant); CONNECT(Water(powerPlant), river[1]);
REPEAT

location := postal address of the new house;
NEW(house[location]);
CONNECT(Electricity(house[location]), powerPlant);
n := number of nearest river,
CONNECT(Water(house[location]), river[n])

UNTIL no free building site available
END City;

52

Figure 3-4. A dynamic component network

Furthermore, a component may also directly delegate the
implementation of an own offercd external interface to one
of its sub-components. For this purpose, an offered external
interface (e.g. ParkingSpace of the StandardHouse below)
can be connected to an offered interface with the same
name that belongs to a sub-component (e.g. garage). This
is possible because an interface that is externally offered by
a component is regarded to represent a required interface
plug inside the component. Analogously, a required inter­
face of a sub-component (e.g. the Water interface of the
groundFloor) is also connectable to a corresponding inter­
face, which is required by the super-component from out­
side. The externally required interface of a component here
represents an offered interface plug inside the component.

COMPONENT StandardHouse
OFFERS Residence, ParkingSpace
REQUIRES Electricity, Water;

VARIABLE
garage: StandardGarage;
groundFloor, firstFloor: ANY(Rooms I Electricity, Water);

BEGIN
NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor);
CONNECT(parkingSpace, ParkingSpace(garage));
CONNECT(Electricity(groundFloor), Electricity);

53

CONNECT(Water(groundFloor), Water);
CONNECT(EI ectricity(firstFloor), Electricity);
CONNECT(Water(firstFloor), Water)

END StandardHouse;

Figure 3-5 depicts the corresponding redirected interfaces
for the example above. As can be seen, hierarchical com­
position inherently enables implementation reuse. The
StandardHouse component can be Oexibly built by inte­
grating the existing StandardGarage implementation as a
sub-component and by redirecting the ParkingSpace inter­
face correspondingly.

Figure 3-5. Redirected interfaces

By default, the declaration of a required interface means
that a component requires an interface with that name of
exactly one other component. In general, a component is
however capable to also require interfaces with the same
name from multiple other components. To do this, the
number of required interfaces has to be specified with the
corresponding declaration. The number is either static or
defined in a dynamic range, where the maximum may be
unbound using the star symbol. For example, a Company­
Building could require two or more Electricity interfaces for
fault-tolerance, and exactly two Water connections.

54

COMPONENT CompanyBuilding
OFFERS OfficeSpace, ParkingSpace
REQUIRES Electricity [2.. *], Water [2];
(* ... *)

END CompanyBuilding;

As a consequence, we may integrate the new company
building as follows in the city network (see also Figure
3-6):

COMPONENT City;
VARIABLE
building: CompanyBuilding;
powerPlant[number: INTEGER]: HydroelectricPowerPlant;
river1, river2: River;

BEGIN
construct the two rivers and N powerplants;
NEW(building);
FOR i := 1 TO N DO

CONNECT(Electricity[i](building), powerPlant[i])
END;
CONNECT(Water[1](building), river1);
CONNECT(Water[2](building), river2)

END City;

The different required interfaces have to be identified by an
index, such as Water[1] and Water[2] and Electricity[1] to
Electricity[N], where the number N of Electricity connections
can be also determined at runtime by the function
COUNT(Electricity(building)).

2

55

Figure 3-6. Multiple required interfaces with the same name

If a component is deleted explicitly, its offered interfaces
have to be disconnected explicitly beforehand. As for the
required interfaces, the DELETE-statement automatically
disconnects them for the deleted component.

DISCONNECT(Electricity[N](building));
DELETE(powerPlant[N])

Although we can arrange arbitrary acyclic or cyclic com­
ponent networks, the language ensures that a component
network is always fully encapsulated by its surrounding
component. The language hence supports hierarchies of
arbitrary component networks, while classical pointer­
oriented languages only have a flat runtime structure with a
single object graph (cf. Section 1.1). This is due to the
following two important conceptual distinctions between
interface connections and classical references:

1. An interface connection constitutes a link which is
only set and managed by the surrounding com­
ponent, whereas a pointer (and a reference) forms

56

a data value that can be freely copied from one to
another object.

2. An interface connection establishes a symmetric
link between a required and an offered interface,
whereas a pointer directly addresses a target object
from the reference holder and may even not be
visible outside the holder.

As will be shown, the pointer issue of ordinary program­
ming languages is now overcome without loss of pro­
gramming expressiveness. The examples in Section 3.7
show how the various topologies of component structures
may be accurately described in our language.

3.5 Communication-Based Interactions

Interfaces enable general communication-based inter­
actions between components. Two components, which are
connected by a required and offered interface, can com­
municate over the interface by bidirectional message
exchange. The feasible sequences of message transmissions
during the communication have to be explicitly defined by
a protocol in the interface. For example, the HotelService
interface below describes the protocol for the com­
munication between a component, which offers this inter­
face, and an external component, which uses it (see the
scenario in Figure 3-7).

57

INTERFACE HotelService;
{

IN Checkln
(

OUT AssignedRoom(number: INTEGER)
{ IN EnterRoom IN ExitRoom }
IN CheckOut OUT Bill(price: INTEGER)
[IN DirectPayment(m: Money)]

OUT FullyBooked
)

}
END HotelService;

A protocol has to be specifIed by a regular expression in
the Extended Backus Naur Form (EBNF) lWirth77bJ25.
Thereby, the symbols in the protocol denote messages
exchanged during the communication. Each message has a
declared transmission direction (either IN or OUT), an
identifier (e.g. Checkln), as well as an optional list of
parameters (e.g. number). The IN-direction defines that a
message is sent to the component offering the interface,
whereas the OUT-direction characterises the opposite
direction of transmission. According to this, the com­
munication protocol of the HotelService interface can be
understood as the temporal series of messages outlined in
Figure 3-7. The parameters of a message represent data
values or component instances that are transmitted within
the message.

~I CBNF . f' .n LO , a concatenation o· expressions rcpresents a sequence, square
brackets [1 indicate an optional expression, curly brackets () describe a
repetition of zero or arhitrary times, and a vertical bar I denotes an
altcrnative between two expressions. By default, concatenation has a
stronger binding than an alternative. The default binding order can be
explicitly changed with round brackets ().

58

Hote~ii •...... ·•..>H6t61·....·;i(.1

Checkln

time axis

alternatives:

AssignedRoom FullyBooked
til=~==

EnterRoom •arbitrary repetition f
(including zero times1==E=Xit=R=oo=m=9.p-

CheckOut ..
Bill

optional DirectPayment..
Figure 3-7. Message communication via an interface

An offered interface of a component can be used in parallel
by all the components which are connected to the corre­
sponding interface, as well as by the containing super­
component itself. The component which offers the interface
plays the role of the server of the interface, whereas the
other components which use the interface act as clients of
this interface. For each client of an interface, the server
automatically maintains a separate communication channel.
The server component automatically saves the state of the
interaction for each client individually. Hence, multiple
Customer components may simult<meously perform their
individual hotel interactions, while they can be in different
stages of communication wi th the same Hotel instance (see
Figure 3-8). For each client, the hotel knows whether the
hotel customer is already checked-in, what its assigned
room number is, or whether he or she already left the hotel
(with direct payment or not).

59

Figure 3-8. Multiple parallel client communications

The following program code sketches the implementation
of a communication between a Customer and a Hotel com­
ponent. The Customer component may directly com­
municate via its required interface, by sending and
receiving messages. The Hotel component contains an
implementation block for the offered HotelSeNice inter­
face. This block is automatically incarnated as a separate
service process for each client. It runs as an independent
light-weighted process inside the server component and
performs the server-side communication with the specific
client. Variables may be associated with the implementa­
tion block, saving the individual client context in the
service process. As multiple such processes may concur­
rently run within the same component, they may need to be
mutually synchronised inside the component by means of
monitor protection (explained later in Section 3.6).

COMPONENT Customer REQUIRES Hotel Service;
VARIABLE n: INTEGER;
BEGIN

HoteIService!Checkln; (* send message *)
IF HotelService?AssignedRoom THEN (* receive-test *)
HoteIService?AssignedRoom(n) (* accept message *)
(* ... *)

ELSE (* fully booked *)
HotelService?FullyBooked (* accept message *)

END
END Customer;

60

COMPONENT Hotel OFFERS HotelService;
IMPLEMENTATION HotelService; (* seNice process *)
VARIABLE n: INTEGER;
BEGIN
WHILE ?Checkln DO (* receive-test *)

?Checkln; (* accept message *)
IF free room THEN

!AssignedRoom(n) (* send message *)
(* ... *)

ELSE !FullyBooked
END

END
END HotelService;

END Hotel;

The send statement, denoted with"! ", transmits a message
to the other communication side, filling the message with
the specified arguments. The message transmission is asyn­
chronous, i.e. the send statement does not need to wait for
the reception of the message by the other side. Hence, the
execution can (but does not have to) immediately continue
after sending. Whereas data values (of type INTEGER,
TEXT etc.) are always sent by copying, component
instances are always transmitted by rnoving. This means
that the components are removed from the sender side and
are delivered as disconnected instances to the receiver side.
This enables dynamic exchange of component such as the
plug-in scenarios described in Section 4.3. If a component
is specified as message argument of a send statement, the
statement first awaits the termination of the component's
communications, then disconnects its required interfaces,
and eventually removes the component from its variable.

Conversely, the receive statement, denoted with "?",
awaits the arrival of a specific message from the other
communication side and accepts the message on alTival.
The contained component instances and data values of the
received message are eventually assigned to the corre­
sponding variables, which are specified as parameter
arguments. (A possible previous content of a variable is
thereby automatically deleted.) A receive statement blocks
the execution as long as the message is not received.

61

Furthermore, the receive-test function, an expression
denoted with "'1", allows testing whether any or a specific
message can be received from a specific interface by first
awaiting any message input. The function hence blocks the
execution until the arrival of any message from the inter­
face but does not yet accept the message nor assign the
message parameters. It should be noted that a receive-test
function is uniquely distinguishable from a receive­
statement, because it forms a syntactical expression and not
a statement. In addition, there is also a non-blocking
INPUT-function to check the arrival of any or a specific
message.

Within the implementation block, the send- and
receive-statements without specified interface directly refer
to the corresponding client, which is served by the block.
Conversely, t()f the communication in the role of a client,
the interface has to be specified (see Table 3-1).

effect syntactical server-side client-side
construct communication communication

send statement !message(x, ...) interiace!message(x, ...)
message

receive statement ?message(x, ...) interface?message(x, ...)
messaae
blocking expression ?message interiace?message
receive test
non-blocking expression INPUT(message) IN PUT(interface,
receive test _tTie§§9_g~)....._..._.--

Table 3-1. Communication statements and functions

Obviously, a required interface of a component has to be
connected before communication can be initiated via it.
T'herefore, the client-side communication commands first
await the establishment of the corresponding connection.
Analogously, an interface can only be disconnected when it
has no open communications.

62

During a communication between a client and server,
all messages have to be sent and received according to the
defined protocol26

• The runtime system is in charge of
monitoring the fulfilment of the protocol. When a client is
disconnected from a component, the implicit FINISH
message (without parameters), is automatically delivered to
the server side and optionally accepted by the server.

3.6 Concurrency

Components figure as autonomous instances in the program
that feature their own intrinsic behaviour by means of the
internally running processes27

. The language predefines a
simple pattern of a lifecyc1e for a component, consisting of
three st.ages: initialisation, main activity, and finalisation 28

.

For initialisat.ion and finalisation, processes can be defined
in the component body, running after t.he creation and
before the disposal of the component, respectively. The
service processes for the offered interfaces only run during
the main activit.y, i.e. after initialisat.ion and before finali­
sation. The TERMINATED-funct.ion may be used during the
main activity to decide whether the component should be
finalised and the main activit.y should stop. This is the case
when the component is to be deleted (on decision of t.he

26 There exist protocols according to which both sides could bc senders at
a certain time of communication, for example "[IN Request] OUT
Response" or "{ IN Order} OUT Delivery". It is the task of the programmer
to design the communication in such a way, that the sender side can be
decided at runtime.
27 Throughout this thesis, the term process means a parallel execution
instance in its gencral sense. No spccific implementation (like threads or
isolated UNIX processes) is prejudiced with this term.
28 The time of finalisation is dcfined by the hierarchical lifetime
dependency of composition. Before a componcnt is de leted, its own
finaliser is first executed and then, all inner components are recursively
finalised in parallel and deleted. Object-oriented problems like
resurrection or undetermined finalisation times and orders IRichOO] are
thus abandoned.

63

hierarchically surrounding instance) and all its internal
service processes are terminated.

COMPONENT Hotel
OFFERS HotelService
REQUIRES Electricity, Water;

VARIABLE
room[number: INTEGER]: Room; i: INTEGER;

BEGIN (* initialisation *)
FOR i::::: 0 TO 100 DO NEW(room[iJ) END

ACTIVITY (* main activity *)
WHILE - TERMINATEDO DO

FOR i := 0 TO 100 DO room[i]!Cleanup END
END

FINALLY (* finalisation *)
Water!StopCons umption; Electricity! StopConsumption

END HotelService;

Of course, the pmallel execution of serVIce processes
generally necessitates appropriate concurrency control
within a component instance, to synchronise accesses to
shared interior resources. For this purpose, monitor­
oriented concurrency control is supported inside a com­
ponent instance. Clcarly, monitor synchronisation is only
applied within a component's implementation, whereas all
interactions between different components are inherently
synchronised due to the communication paradigm.
Specifically, the EXCLUSIVE and SHARED attributes can
be associated to any compound statement block (BEGIN,
DO, THEN, or REPEAT) or expression, in order to establish
an exclusive or shmed monitor lock on the component for
the execution of the corresponding program region.
Whereas only one exclusive region can be executed at the
same time in the same component, shared regions can run
in pmallel and are only mutually barred against exclusive
regions of the component. All code regions operating on
the component state have to be protected by a shared or an
exclusive attribute. Exclusive protection is required if the
code may modify the component state. The compiler
ensures that all processes are sufficiently synchronised
inside the component scope, see Section 4.6.2.

64

INTERFACE HotelReservation;
{ IN AskAvailability OUT FreeRooms(number: INTEGER)
I IN Book(nofRooms: INTEGER) (OUT Done lOUT Failed) }

END HotelReservation;

COMPONENT Hotel
OFFERS HotelService, HotelReservation;
(* ... *)
VARIABLE freeRooms: INTEGER;

IMPLEMENTATION HotelReservation;
VARIABLE n; INTEGER;
BEGIN

WHILE ?AskAvailability OR ?Reserve DO
IF ?AskAvailability THEN {SHARED}

?AskAvailability; !FreeRooms(freeRooms)
ELSE ?Reserve THEN {EXCLUSIVE}

?Reserve(n);
IF freeRooms >= n THEN
freeRooms ;= freeRooms - n; !Done

ELSE! Failed END
END

END
END HotelReservation;

BEGIN freeRooms;= 100
END Hotel;

Similar to Active Oberon tGut97, Reali04], an AWAIT­
statement [BH73] can be used within a protected (exclusive
or shared) region, in order to define a Boolean condition
that has to be true before the execution continues (see the
example in Section 3.7.1). For this purpose, the AWAIT­
statement suspends the execution of the current process as
long as the condition is not fulfilled. As usual, the AWAIT­
statement temporarily releases the monitor lock while
waiting, letting other processes fulfil the condition. The
waiting process is automatically reactivated when the
condition is fulfilled.

65

3.7 Examples

The following examples demonstrate how typical design
patterns of concurrency29 can be described in the new pro­
gramming language.

3.7.1 Producer-Consumer

The first example is a producer-consumer scenario, where
producers and consumers concurrently interact with a
common buffer. Producers thereby create data elements
and put them into the buffer, whereas consumers need these
items and take them out again.

COMPONENT Producer REQUIRES DataAcceptor;
VARIABLE i: INTEGER;
BEGIN

FOR i := 1 TO 100000 DO DataAcceptor!Element(i) END
END Producer;

INTERFACE DataAcceptor;
{ IN Element(x: INTEGER) }

END DataAcceptor;

COMPONENT Consumer REQUIRES DataSource;
VARIABLE i: INTEGER;
BEGIN
WHILE DataSource?Element DO DataSource?Element(i) END

END Consumer;

INTERFACE DataSource;
{ OUT Element(x: INTEGER) }

END DataSource;

29 Naturally, we do not show how to model classical data structures (linear
lists, trees, hash tables etc.), as this is already covered by the inbuilt
concept of collections (cL 3.2). A programmer can hence directly address
the solution of a real problem, without having to deal with such low-level
memory structures.

66

COMPONENT BoundedBuffer
OFFERS DataAcceptor, DataSource;
CONSTANT Capacity = 10;
VARIABLE

a[position: INTEGER]: INTEGER; (* circular buffer *)
first, last: INTEGER; finished: BOOLEAN;

IMPLEMENTATION DataAcceptor;
BEGIN

WHILE ?Element DO {EXCLUSIVE}
AWAIT(last - first < Capacity);
?Element(a[last MOD Capacity]); INC(last)

END;
BEGIN {EXCLUSIVE} finished := TRUE END

END DataAcceptor;

IMPLEMENTATION DataSource;
BEGIN

REPEAT {EXCLUSIVE}
AWAIT((first < last) OR finished);
IF first < last THEN
!Element(a[first MOD Capacity]); INC(first)

END
UNTIL finished

END DataSource;

BEGIN first := 0; last := 0; finished := FALSE
END BoundedBuffer;

The consumer-producer program may now be set up as
follows (see Figure 3-9):

COMPONENT Simulation;
VARIABLE

buffer: BoundedBuffer;
producer: Producer;
consumer: Consumer;

BEGIN
NEW(buffer); NEW(producer); NEW(consumer);
CONNECT(DataAcceptor(producer), buffer);
CONNECT(DataSource(consumer), buffer)

END Simulation;

67

Figure 3~9. Simple producer-consumer scenario

Producer and consumer immediately begin to interact with
the buffer, when the Simulation component is created and
the internal components have been properly connected. Of
course, one can also connect multiple producers and
multiple consumers to the same buffer (see Figure 3-10):

COMPONENT Simulation;
VARIABLE

buffer: BoundedBuffer;
producer[number: INTEGER]: Producer;
consumer[number: INTEGER]: Consumer;
i, N, M: INTEGER;

BEG IN (* set Nand M *)
NEW(buffer);
FOR i := 1 TO N DO

NEW(producer[i]);
CONNECT(DataAcceptor(producer[i]), buffer)

END;
FOR i := 1 TO M DO

NEW(consumer[i]);
CONNECT(DataSource(consumer[i]), buffer)

END
END Simulation;

Figure 3-10. General producer~consumerscenario

68

3.7.2 Pipeline

Another elementary pattern is a parallel pipeline, in which
data is delivered through a series of connected concurrent
processing units. A popular example is the Sieve of
Eratosthenes, in which prime numbers are computed via a
series of Sieve components. Each Sieve component concur­
rently filters out multiples of an initial prime number,
obtained from a preceding Sieve instance. At the beginning
of the parallel pipeline, a special NumberGenerator com­
ponent produces natural numbers starting tl-om 2.

INTERFACE NumberStream;
{ OUT Number(x: INTEGER) } OUT Finished

END NumberStream;

INTERFACE Prime;
OUT PrimeNumber(x: INTEGER) lOUT Finished

END Prime;

COMPONENT Sieve
OFFERS NumberStream, Prime
REQUIRES NumberStream;

VARIABLE prime: INTEGER; finished: BOOLEAN;

IMPLEMENTATION Prime;
BEGIN {EXCLUSIVE}

IF -finished THEN !PrimeNumber(prime) ELSE !Finished END
END Prime;

IMPLEMENTATION NumberStream;
VARIABLE i: INTEGER;
BEGIN {EXCLUSIVE}

WHILE NumberStream?Number DO
NumberStream?N umber(i);
IF i MOD prime # 0 THEN !Number(i) END

END;
IF NumberStream?Finished THEN

NumberStream?Finished
END;
!Finished

END NumberStream;

BEGIN
finished := NumberStream?Finished;

69

IF finished THEN NumberStream?Finished
ELSE NumberStream?Number(prime)
END

END Sieve;

COMPONENT NumberGenerator OFFERS NumberStream;
IMPLEMENTATION NumberStream;
VARIABLE i: INTEGER;
BEGIN FOR i := 2 TO N DO !Number(i) END; !Finished
END NumberStream;

END NumberGenerator;

The parallel pipeline may now be dynamically constructed,
by extending the chain of Sieve components whenever a
new prime number is obtained. The corresponding com­
ponent structure of the Sieve of Eratosthenes is sketched in
Figure 3-11.

COMPONENT Eratosthenes;
VARIABLE

generator: NumberGenerator;
sieve[i: INTEGER]: Sieve;
i, p: INTEGER;

BEGIN
NEW (generator);
i := 1; NEW(sieve[i]);
CONNECT(NumberStream(sieve[i]), generator);
WHILE Prime(sieve[i])?PrimeNumber DO

Prime(sieve[i])?PrimeNumber(p);
WRITE(p); WRITE(" ");
INC(i); NEW(sieve[i]);
CONNECT(NumberStream(sieve[i]), sieve[i-1])

END;
Prime(sieve[i])?Finished

END Eratosthenes;

Figure 3-1 1. Parallel Sieve of Eratosthenes

70

3.7.3 Client-Server

A client-server model is a frequent software pattern, where
an arbitrary number of clients generally use a common
server in parallel, as sketched below and by Figure 3-12:

COMPONENT Server OFFERS Service;
IMPLEMENTATION Service;
BEGIN WHILE ?Request DO !Response END

END Service;
END Server;

COMPONENT Client REQUIRES Service;
ACTIVITY

REPEAT Service! Request; Service?Response
UNTIL TERMINATEDO

END Client;

INTERFACE Service;
{ IN Request OUT Response}

END Service;

COMPONENT System;
VARIABLE

server: Server;
client[i: INTEG ER]: Client;
i, N: INTEGER;

BEG IN (* set N *)
NEW(server);
FOR i := 1 TO N DO

NEW(client[i]); CONNECT(Service(client[i]), server)
END

END System;

Figure 3-12. Client-server architecture

Apparently, a server component supports the concurrent
and individual service of all clients, regardless of the com-

71

plexity of the protocol. In more sophisticated systems, a
client may also use different servers (see Figure 3-13):

COMPONENT Client REQUIRES Service [1 .. *];
VARIABLE k, m: INTEGER;
ACTIVITY

REPEAT
k := RANDOM(1, COUNT(Service));
(* random selection of a service interface *)
Service[k]!Request END;
Service[k]?Response END

UNTIL TERMINATEDO
END Client;

COMPONENT System;
VARIABLE

server[m: INTEGER]: Server;
client[n: INTEGER]: Client;
i, k, N, M: INTEGER;

BEG IN (* set Nand M *)
FOR k := 1 TO M DO NEW(server[k]) END;
FOR i := 1 TO N DO

NEW(client[i]);
FOR k := 1 TO M DO
CONNECT(Service[k](client[i]), server[k])

END
END

END System;

It is noteworthy that client components immediately start to
run after their creation, although the interJllce connections
are dynamically added later. Therefore, the number of
required Service interfaces may dynamically grow during
the activity of a Client. However, the COUNT-function
always returns at least the specified minimum number of
connections, which is one in this program. In situations,
where the number of connections should not dynamically
grow, the exact number of connections may be explicitly
specified from the outer instance by sending a message to
the cOlTesponding sub-component.

72

Figure 3- I3. Clients using mu Itiple servers

3.7.4 Divide-and-Conquer

The metaphor of divide-and-conquer is a useful computing
pattern, especially in concurrent systems. The idea is to
solve a complex task by splitting it into different sub-tasks,
which are then solved in parallel. The results of the sub­
tasks are eventually combined to yield the final result. A
possible example is the computation of the Mandelbrot
fractal, for which the fractal plane can be split into disjoint
regions that are computed independently and concurrently.

INTERFACE MandelbrotSet;
IN Start(N, M: INTEGER; xO, yO: REAL)
{OUT Value(x, y: INTEGER; zreal, zimag: REAL) } OUT Finish

END MandelbrotSet;

COMPONENT MandelbrotTask OFFERS MandelbrotSet;
IMPLEMENTATION MandelbrotSet;
VARIABLE

zreal[x, y: INTEGER]: REAL; zimag[x, y: INTEGER]: REAL;
N, M, x, y, k: INTEGER; xo, yO: REAL;
zreal2, zimag2, zri, creal, cimag, a, b: REAL;

BEGIN
?Start(N, M, xO, yO);
FOR x := 0 TO N-1 DO

FOR y:= 0 TO M-1 DO
zreal[x, y] := 0.0; zimag[x, y] := 0.0

END
END;
FOR k := 1 TO Iterations DO

FOR x := 0 TO N-1 DO
FOR Y := 0 TO M-1 DO
zreal2 := zreal[x, y] * zreal[x, y];
zimag2 := zimag[x, y] * zimag[x, y];
IF SQRT(zrea12 + zimag2) <= 2.0 THEN

73

creal := xO + Resolution * x; cimag := yO + Resolution * y;
zri := zreal[x, y] * zimag[x, y];
a := zreal2 - zimag2 + creal; b := 2 * zri + cimag;
zreal[x, y] := a; zimag[x, y] := b

END
END

END
END;
FOR x := 0 TO N-1 DO

FOR Y := 0 TO M-1 DO
!Value(x, y, zreal[x, y], zimag[x, y])

END
END;
!Finish

END MandelbrotSet;
END MandelbrotTask;

The partitioning of the plane and the execution of Mandel­
brot sub-tasks can then be organised as below.

COMPONENT Mandelbrot;
CONSTANT

Iterations = 5000; H = 10; V = 10; Resolution = 0.05;
Left = -2.0; Top = -1.0; Right = 2.0; Bottom = 1.0;

VARIABLE
task[i, j: INTEGER]: MandelbrotTask;
zreal[x, y: INTEGER]: REAL; zimag[x, y: INTEGER]: REAL;
N, M, i, j, x, y: INTEGER; L, T, a, b: REAL;

BEGIN
N := INTEGER((Right-Left) / (Resolution * HorizontaITasks));
M := INTEGER((Bottom-Top) / (Resolution * VerticaITasks));
FORi:=OTOH-1 DO
FORj :=OTOV-1 DO

L := Left + i * N * Resolution; T := Top + j * M * Resolution;
NEW(task[i, j]); MandelbrotSet(task[i, j])!Start(N, M, L, T)

END
END;
FOR i := 0 TO H-1 DO
FORj :=OTOV-1 DO

WHILE task[i, n?Value DO
MandelbrotSet(task[i, j))?Value(x, y, a, b);
zreal[i * N + x, j * M + y] := a;
zimag[i* N + x, j * M + y] := b

END;
MandelbrotSet(task[i, j])?Finish

END
END

END Mandelbrot;

74

Figure 3-14 illustrates the corresponding hierarchical task
stTucture.

Figure 3-14. Two-dimensional partitioning of
the Mandelbrot fractal

3.7.5 Token Ring

Another interesting concurrent pattern is a ring of
connected components, which let a designated item
circulate around. The item, typically called token,
represents a specific status that only one participant ought
to own at the same time. Due to the cyclic passing, the
system inherently guarantees the fairness that every
instance receives the token equally often. The code for such
a ring topology goes as follows (see also Figure 3-15):

INTERFACE Partner;
{ IN Token} IN Finish

END Partner;

COMPONENT Player OFFERS Partner REQUIRES Partner;
VARIABLE finished: BOOLEAN;

IMPLEMENTATION Partner;
BEGIN

WHILE ?Token DO {EXCLUSIVE}
?Token; IF -finished THEN Partner!Token END

END;
BEGIN {EXCLUSIVE}

?Finish; IF -finished THEN Partner!Finish END;
finished := TRUE

75

END
END Partner;

BEGIN finished := FALSE
END Player;

COMPONENT Ring;
VARIABLE

player[number: INTEGER]: Player;
i, N: INTEGER;

BEG IN (* set N *)
FOR i := 1 TO N DO NEW(player[i]) END;
FOR i := 1 TO N DO

CONNECT(Partner(player[i]), player[i MOD N + 1])
END;
Partner(player[1])!Token (* inject token *)

FINALLY
Partner(player[1])! Finish

END Ring;

Figure 3-15. Token ring

In the program above, the outer Ring component initiates
the cyclic flow by handing the token to one of the Player
components. It is furthermore noteworthy that the terrnina­
tion of the cyclic flow is also clearly planned. On deletion
of the Ring component, the finalisation process causes an
arbitrary Player to stop passing and to transitively inform
the other players as well.

76

3.7.6 Peer-To-Peer

The last example outlines a system of interacting
equivalent components, often called peers. Organised in a
completely connected network (cf. Figure 3-16), each com­
ponent is able to interact with each other. With such a
scenario, we can demonstrate that the language allows
modelling component networks of <rrbitrary shape.

INTERFACE Colleague;
{ IN Ask(question: TEXT) OUT Response(answer: TEXT) }

END Colleague;

COMPONENT Person
OFFERS Colleague
REQUIRES Colleague [1 ..*];

IMPLEMENTATION Colleague;
VARIABLE question, answer: TEXT;
BEGIN

WHILE ?Ask DO
?Ask(question);
(* think about answer to the question *)
!Response(answer)

END
END Colleague;

VARIABLE i: INTEGER; question, answer: TEXT;
ACTIVITY

REPEAT {EXCLUSIVE}
(* think about interesting question *)
i := RANDOM(1, COUNT(Colieague));
Colieague[i]!Ask(question);
Colieague[i]?Response(answer);

UNTIL TERMINATEDO
END Person;

COMPONENT World;
VARIABLE person[i: INTEGER]: Person; i, k, N: INTEGER;
BEGIN (* set N *)

FOR i := 1 TO N DO NEW(person[i]) END;
FOR i := 1 TO N DO

FOR k := 1 TO N DO
CONNECT(Colieague[k](person[i]), person[kJ)

END
END

END World;

77

Figure 3-16. Interacting peers

3.8 I{elated Work

The programming language Composita has certainly
profited from various sources of inspirations.

Component relations. Our component concept
(including the diagram notation) is certainly influenced by
COM rWiI88,WiI90, COM06]. In particular, this concerns
the relations between components, namely aggregation and
wiring of ingoing and outgoing interfaces. We have
developed these relations towards first-level programming
concepts, which do not involve explicit references anymore
and also enable guaranteed hierarchical encapsulation (cf.
Section 2.3.1). In a novel way, component structures can be
dynamically built in our language, unlike architecture
description languages [GA094, BE+94, MD+95, LK+95,
MQR95, SD+95, GMW97, MRT99, A1l97], which only
support static structures (cf. Section 2.3.2). The possibility
of transmitting components within messages between
others is also a new concept, allowing dynamic and safe
plug-in scenarios without passing references.

Interface polymorphism. The idea of using symmetric
interface polymorphism as a replacement for inheritance
has been primarily motivated by COM and was also

78

inspired from Zonnon [GZ05]. In contrast to Zonnon, our
language supports flexible reuse without an extra concept
of default implementations (cf. Sections 2.1.5.4 and 2.3.1),
as reuse is inherently enabled by hierarchical composition
and interface connections. The abstract signature thereby
ensures the correct use of polymorphic components.

Message communication. As for the fundamental
communication paradigm (cf. Section 2.1.5.3), the model
of component interactions is principally influenced by CSP
[Hoare78]. The use of asynchronous message exchange
with non-blocking send statements goes back to the Actors
model [Agha86]. The dialog concept of Active C# [GG04]
and Zonnon motivated us to also support client-individual
communications and use EBNF for the protocol
description. More innovatively, our language does not
require explicit invocations of dialogs and also engages
high-level messages (with arbitrary content), instead of
directly exchanging tokens and single data values.
According to our design principles, message com­
munication is indeed provided as the sole concept for inter­
actions between components.

Component-intrinsic activities. The idea of equipping
components (or objects) with an intrinsic activity was
originally introduced with Simula I [DN66]. A more
elaborated version of this concept was realised in Active
Oberon [Gut97, Mu102, Reali041, which also influenced
our model of autonomous components. The concept of
monitors [BH73, Hoare74], which is also integrated in
Active Oberon, serves in our language as a mechanism to
synchronise the processes within a component. However, a
process only runs within its enclosing component and
therefore, remains subject to synchronisation within only
one component insklnce. As all component interactions are
rigorously based on message communication, the monitor
concept only forms a construct for the component imple­
mentation and is not of fundamental importance for the
component model.

79

Syntax Notation. The style of the syntax, especially
for the elementary statement constructs (IF, WHILE etc.), is
largely adopted from Oberon [Wirth88], emphasising clear
readability and avoiding counterproductive abbreviations.

80

Chapter 4

Conceptual Advances

As a result of the simple but powerful component notion,
the new language abolishes various problems that exist in
ordinary programming languages and for which no satis­
factory solution has been found to date. This chapter dis­
cusses the most important conceptual improvements intro­
duced by the new programming model. For each of these
issues, we fIrst discuss the shortcomings of existing
languages before presenting the new solution achieved by
our programming model.

4.1 Hierarchical Encapsulation

The key feature of the new programming language is the
general ability to hierarchica.lly encapsulate arbitrary static
or dynamic structures of components within others. By
using general hierarchical composition in combination with
interface connections, the complete encapsulation of inner
components and their structures is continuously guaranteed.
This is in contrast to ordinary programming languages,
which are based on pointers and do not support general
encapsulation and protection of logical sub-structures. This
typically leads to fragile programs with potentially arbitrary
referential dependencies.

In the subsequent two sections, we discuss the problem
by means of a concrete example of a library that contains a

81

dynamic collection of books. The library should be usable
by an arbitrary number of customers, which independently
bon-ow and return books and which may also list tlle book
catalogue. Tn the following section, we first demonstrate
the difficulties involved using this example in classical
pointer-oriented languages. After this, we focus on how the
issue is overcome with the hierarchical composition of ilie
new component language.

4.1.] The Classical Problems

In classical programming languages, such a klsk has to be
modelled as a flat structure: both the library and books
have to be allocated as usual objects in the heap and need
to be appropriately linked together by pointers. Thereby,
pointers commonly represent all kinds of relations, such as
the contains-relation between library and books, as well as
the normal textual references listed in books. Due to the
missing support of hierarchical composition, encapsulation
of books can not be guaranteed. Instead, very cautious pro­
gramming is required to prevent passing out pointers to
books that ought to be internal to the library. The object­
oriented program below (written in C# [CS06l) demon­
strates this situation. For illustration, an array is employed
here for the implementation of the dynamic book collec­
tion. The use of a more sophisticated data structure would
not change anything with regard to the following dis­
CUSSIOn.

class Book {
public string isbn; string content;
Book[] references; /* refers to other books */
public string GetContentO { return content; }
public void Annotate(string note) { content += note; }

}

82

class Library {
Book[] books;
public Book BorrowBook(string isbn) {

for (int i =0; i < books.Length; i++) {
if ((books[i] != null) && (books[i].isbn == isbn)) {

return books[i];
}

}
return null; /* null means unavailable */

}
/* ... */

Although the program fragment might look correct at the
first glance, the BorrowBook method returns in error a
reference to an internal book of the library, thus breaking
the encapsulation of the library structure. A customer could
then accidentally access an internal book of the library, as
shown in the code fragment below and in Figure 4-1.

class Customer {
Library library;
void IncorrectUse {

Book book = Iibrary.BorrowBook(13-46S-11124-2");
read(book.GetContentO);

/* forbidden reading of an internal library book */
book.Annotate("personal note");
/* forbidden modification of an internal library book */

}
}

I
I
I
I
I
I
I
I
I

I I

~i'!..te.!'!..a~/~~'X ::.t:u~tlf.r: :

Legend: Q object reference

Figure 4-1. Encapsulation breach by incorrect referenc ing

83

To avoid this problem, one would decide to either return
the book as copy or better, to properly remove the book
from the bookshelf (array) before handing it over to the
customer. The BorrowBook method may therefore be
adjusted to this:

Book x =books[i]; books[i) = null;
return x;

However, despite the taken precaution, the directly or
indirectly referenced books in the library still remain incor­
rectly accessible by external customers. The subsequent
fragment and Figure 4-2 delineates an example of such a
situation:

class Customer {
Library library;
void IncorrectUse {

Book book = library.BorrowBook("3-468-11124-2");
Book x = book.references[O);
/* read and modify x */

}
}

Figure 4-2: Another situation of incorrect referencing

The abovementioned scenarios should demonstrate how
vulnerable object-oriented and other classical programs are
due to the fact, that pointers can conceptually link arbitrary
objects and can be copied without restriction in the system.
Of course, it may be argued that pointers ought not to
represent book references in this example (which would be
actually a capitulation of this concept). Another approach

84

of only passing read-only references [MPOll, does unfor­
tunately not give a sustainable solution either, since books
may still be read without permission.

Allowing customers to list the library catalogue also
entails problems with the encapsulation. Generally, the
client-individual iteration logic is outsourced to an external
iterator object'° which stores a reference leading into the
internal library structure (see Figure 4-3). Due to the
potential encapsulation breaches, this scenario is usually
considered as a counter-example for the proposed object­
oriented ownership models [CPN98, MPOl]. However, we
think that this problem is rather caused by the artificial
externalisation of the iterator logic within a separate helper
object.

current

encapsulation breach-------1
I

1
I

1 Elrtaj! J----.'IBnnk·1 :
I···,·· 1

1...J0/€fQa£'p0'1 ~t!.ustll.r~ I

Figure 4-3. Iterator object

4.1.2 The New Solution

In our programming language, the hierarchical structure of
the library example can be clearly reflected in the program.
The PublicLibrary component contains books as sub­
components (see Figure 4-4) and thus guarantees that the
internal books are fully encapsulated. As a result, any direet
and uncontrolled accesses from outside to the internal
books are prevented. The PublicLibrary is generic, i.e. any
component with the offered interface Book can be stored

30 Although the iterator has become a popular object-oriented design
pattern [GH+951, it rather forms an artificial solution to enable long-term
client- ind ividual interactions.

85

within the dynamic collection (see Section 3.2) of the
library component. We first focus on the implementation of
the library, before we demonstrate how book components
may be programmed.

INTERFACE Library;
{

IN BorrowBook(isbn: TEXT)
(OUT Result(b: ANY(Book)) IOUT Unavailable)

IN ReturnBook(b: ANY(Book))

IN ListCatalogue
{ OUT Entry(isbn: TEXT) }
OUT EndOfCatalogue

}
END Library;

COMPONENT PublicLibrary OFFERS Library;
VARIABLE book[isbn: TEXT]: ANY(Book);

IMPLEMENTATION Library;
VARIABLE isbn: TEXT; b: ANY(Book);
BEGIN

WHILE ?RequestBook OR ?ListCatalogue DO
IF ?RequestBook THEN {EXCLUSIVE}
?RequestBook(isbn);
IF EXISTS(book[isbn]) THEN
!Result(book[isbn]) (* variable book[isbn] is now empty! *)

ELSE !Unavailable
END

ELSIF ?ReturnBook THEN {EXCLUSIVE}
?ReturnBook(b); b!GetISBN; b?ISBN(isbn);
MOVE(b, book[isbn])

ELSE {SHARED}
?ListCatalogue;
FOREACH isbn OF book DO !Entry(isbn) END;
!EndOfCatalogue

END
END

END Library;

BEGIN (* initialise library *)
END PublicLibrary;

To identify the books in the collection, international
standard book numbers (ISBNs) serve as indexes. If

86

present, the appropriate book is transmitted to the corre­
sponding exterior customer. Note that the components are
always sent by moving and thus, the book is removed from
the library when sent within a message. Furthermore, the
absence of a book can be appropriately communicated by
the alternative message named Unavailable, whereas in
object-orientation, an artificial null reference is typically
employed to indicate this case. Moreover, the language­
inbuilt MOVE~statement is engaged in the example above,
to move a component from one variable to another. (A
possible previous content of the target variable is in turn
automatically deleted.)

Multiple customers may now be connected to the
library and interact with it in parallel. The statefull process
of listing the book catalogue is directly supported by the
concept of long-term client-individual communications.

COMPONENT Customer REQUIRES Library;
VARIABLE isbn, interested: TEXT; book: ANY(Book);
BEGIN

Library!ListCatalogue;
WHILE Library?BookReference DO

Library?E ntry(isbn);
IF Interesting(isbn) THEN interested := isbn END

END;
Library?EndOfCatalogue;
(* determine an isbn of interest *)
Library! RequestBook(interested);
IF Library?Result THEN

Library?Result(book);
(* use book *)
Library! ReturnBook(book)

ELSE Library?Unavailable
END

END Customer;

87

Figure 4-4. Digital library with encapsulated books

The book components may be implemented as below. In
this program, book references are always represented as
what they actually are in reality, namely globally unique
identi;liers (GUIDs) in the form of international book
standard numbers (ISBNs). These real book references do
not involve any specific language concept but only form
programmer-defined globally unique identifiers of com­
ponent instances. In contrast to ordinary pointers, such
GUIDs do neither imply a direct access link nor an
existence guarantee. Ijke in reality, a book reference does
not yet enable a person to directly access and read a corre­
sponding book without obtaining it first from a library,
book store or another source. And evidently, the knowledge
of a book reference does not yet guarantee that the COlTe­
sponding book is still existent (and available).

INTERFACE Book;
{

IN Read OUT Content(isbn, content: TEXT)

IN Annotate(note: TEXT)

IN ListReferences
{ OUT Reference(isbn: TEXT) }
OUT EndOfList

}
END Book;

COMPONENT LibraryBook OFFERS Book;
VARIABLE

isbn, content: TEXT; reference[no: INTEGER]: TEXT;

IMPLEMENTATION Book;
VARIABLE note: TEXT; i: INTEGER;
BEGIN
WHILE ?Read OR ?Annotate DO

88

IF ?Read THEN {SHARED} ?Read; !Content(isbn, content)
ELSIF ?Annotate THEN {EXCLUSIVE}
?Annoate(x); APPEND(content, note)

ELSE {SHARED}
?ListReferences;
FOREACH i OF reference DO !Reference(reference[i]) END;
!EndOfList

END
END

END Book;

BEGIN (* initialise book *)
END LibraryBook;

4.2 Structured Networks

As a further improvement, networks of components cITe
always clearly described and exclusively controlled by the
hierarchically surrounding component. Components are not
allowed to create and change exterior relations on their own
initiative. In object-oriented systems, objects can not
hierarchically manage and supervise such structures,
potentially resulting in an object graph of unstructured
topology with many implicit dependencies.

To demonstrate the gained structural control, we con­
sider a concrete example. For this purpose, we reuse the
City example from Chapter 3 and model buildings which
are connected to different water and electricity suppliers. In
the following section, we first describe how this example
would be represented in a classical language and analyse
the resulting structural problems. Subsequently, we show
how these problems are eliminated if we realise the same
scenario in our language.

4.2.1 The Classical Problems

The following code fragment sketches a possible solution
of the example using an ordinary object-oriented language.
The City object thereby creates a set of house objects, a

89

power plant and two rivers. The city is also responsible for
arranging the supplies of the buildings (see Figure 4-5).

class House {
public PowerPlant electricitySupply;
public River waterSupply;

}

class PowerPlant {}

class HydroelectricPowerPlant: PowerPlant {
public River waterSupply;

}

class River {}

class City {
House[] houses;
PowerPlant powerPlant;
River northRiver, south River;

public CitYO { II initialiser
houses = new House[N];
northRiver = new RiverO; southRiver =new RiverO;
powerPlant = new HydroelectricPowerPlantO;
powerPlant. waterSupply = northR iver;
for (int i =0; i < N; i++) {

houses[i] = new HouseO;
houses[i].electricitySupply = powerPlant;
if (i <= N/2) { house[i].waterSupply = northRiver; }
else { house[i].waterSupply = southRiver; }

}
}

}

90

Figure 4-5. Objeet-oriented city

Though the city defines a particular organisation, house
objects may freely rearrange the structure of the city (by
accident or intention). With regard to the example, the
intended city structure can be easily subverted by a specific
implementation of a House object, as outlined below. On
the one hand, the house-internal logic may change
references among the houses and on the other hand, new
buildings may be created without knowledge of the city
(see also Figure 4-6).

class House {
public PowerPlant electricitySupply;
public River waterSupply;

public void InteriorWorkO {
waterSupply =electricitySupply.waterSupply;
II unallowed change of the water supplier

}

House sommerHouse;
public void StartlnhabitationO {

sommerHouse = new HouseO;
sommerHouse.electricitySupply = electricitySupply;
sommerHouse.waterSupply = waterSupply;
II build a new house that is not controlled by the City

}
}

91

Figure 4-6. Uncontrolled change of the city structure

An implication of such uncontrolled object dependencies
means the city is even unable to replace a power plant,
since unknown third-party objects might still have a pointer
to the former power plant. Figure 4-7 shows <:ill example of
such a situation, caused by the illegally built summerhouse
that is only reachable via a private reference from another
house.

class City {
House[] houses;
PowerPlant powerPlant;

public void ReplacePowerPlantO {
powerPlant:= new WindPowerPlantO;
for (int i := 0; i < N; i++) {

house[i].electricitySupply = powerPlant;
}

}
}

92

new
powerplant

former
\',p~)wel'c:>J powerplant

Figure 4-7 . Replacing a power plant

4.2.2 The New Solution

Below, the same example is developed in our programming
language. Apparently, the city possesses full control over
its inner organisation and the relations between houses,
water and electricity suppliers. None of the internal com­
ponents may rearrange or establish connections on its own
with other sub-components of the city.

COMPONENT City;
VARIABLE

house[number: INTEGER]: ANY(House IElectricity, Water);
powerPlant: ANY(Electricity IWater);
northRiver, southRiver: River;
i: INTEGER;

BEGIN
NEW(northRiver); NEW(southRiver);
NEW(powerPlant, HydroelectricPowerPlant);
CONNECT(Water(powerPlant), northR iver);
FOR i := 1 TO N DO

NEW(house[i], StandardHouse);
CONNECT(EI ectricity(house[i]), powerPlant);
IF i <= N /2 THEN
CONNECT(Water(house[i]), northRiver)

ELSE
CONNECT(Water(house[i]), southRiver)

END
END

END City;

93

Figure 4-R. Structured city organisation

Of course, the City component may safely replace a power
plant if need be. This is because the City component has
absolute control over the structure of the sub-component
and thus has complete knowledge of all the interface con­
nections among the sub-components. Using the following
statements, all the connections to the offered Electricity
interface of the old power plant are first deleted, before the
new power plant component is installed and the new con­
nections are established. The NEW -statement automatically
deallocates the previously existing component in the
variable. Tn addition, the required interfaces of the deleted
component are automatically disconnected.

FOR i := 1 TO N DO
oISCONNECT(Electricity(house[i]))

END;
NEW(powerPlant, WindPowerPlant);
FOR i := 1 TO N DO
CONNECT(Electricity(house[i]), powerPlant)

END

94

4.3 Dynamic Plug-Ins

Our component model offers the flexibility to dynamically
install components within others, by transmitting such
plug-in components within messages. Naturally, a plug-in
component does not have to be known at the development
time of their host component but the host accepts any plug­
in component that fulfils the specified interfaces. In con­
trast to conventional object-oriented models, we require the
explicit declaration of the offered and required interfaces of
the plug-in component, such that unspecified external
dependencies of the plug-in instances can be excluded.

By way of an exemplary scenario, the conceptual
difference between the object-oriented approach and our
language should be contrasted. For this purpose, an
elevator ought to be dynamically installed in a house com­
ponent (plug-in). We first discuss how this would be
addressed in an object-oriented language and what kinds of
difficulties are therewith involved. After that, we show how
our language enables an adequate and safe realisation of
this scenario.

4.3.1 The Classical Problems

Using an object-oriented language, the host object of a
plug-in generally prescribes a specific base class, from
which the concrete plug-in classes must inherit. As a result
of the sub-type relation, the host object can accept a
reference to any specific plug-in object and is able to use
the plug-in as defined by the base class.

class Elevator {
public abstract void StartRunningO;

}

class ModernHouse {
Elevator elevator; II reference to a plug-in
public PowerPlant electricity;

95

public void InstaliElevator(Elevator x) {
elevator == x;
elevator.PutlntoOperation();

}
}

We may now define and create a concrete elevator object
and install it in the house object. This leads to the runtime
structure depicted in Figure 4-9.

class ElectricalElevator: Elevator {
PowerPlant electricity;

public ElectricalElevator(powerPlant p) { electricity == p; }
public override void PutintoOperation() {

/* serve corridor calls */
}

}

class City {
PowerPlant p; ModernHouse h;

public void Setup {
p == new PowerPlantO; h == new ModernHouseO;
h.electricity == p;
Elevator e == new ElectricalElevator(new PowerPlant());
h.lnstaIiElevator(e);

}
}

I
I
I

J2c:.'-!..s.!JJ!}!!i!~~I:!r;.~1!.r:: j

Figure 4-9. Object-oriented plug-in structure

Obviously, the host object has no information about exter­
nal dependencies that may be induced by the plug-in
object. In our setting, the electrical elevator maintains a
direct reference to a specific electricity supplier, which is

96

potentially different to the supplier of the house. Due to the
(synchronous) method invocations, the execution of the
plug-in implementation also goes at the expense of the host
object. This may block, delay or even corrupt the execution
of the house logic in an undefined manner.

4.3.2 The New Solution

The same scenario can be safely realised in the new com­
ponent-based language, as shown below. TIle abstract com­
ponent signature with the ANY-construct (see Section 3.2)
thereby states all necessary offered and all possible
required interfaces of a possible plug-in component. This
means that the elevator component in the house requires at
most the Electricity interface, which is always connected to
the required Electricity interface of the house (see also
Figure 4-10). The concrete elevator may be eventually
created outside the house and transmitted within a message
to the inner domain of the house component.

INTERFACE Elevator;
IN Start

END Elevator;

INTERFACE HouseConfiguration;
IN InstaIlElevator(x: ANY(Elevator IElectricity))

END HouseConfiguration;

COMPONENT ModernHouse
OFFERS HouseConfiguration
REQU IRES Electricity;

VARIABLE elevator: ANY(Elevator IElectricity); (* ... *)

IMPLEMENTATION HouseConfiguration;
BEGIN {EXCLUSIVE}

? InstallElevator(elevator);
CONNECT(Electricity(elevator), Electricity)

END HouseConfiguration;
END ModernHouse;

97

COMPONENT ElectricalElevator
OFFERS Elevator
REQU IRES Electricity;

IMPLEMENTATION Elevator;
BEG IN ?Start; (* serve corridor calls *)
END Elevator;

END ElectricalElevator;

COMPONENT City;
VARIABLE

house: ModernHouse; powerPlant: PowerPlant;
elevator: ANY(Elevator);

BEGIN
NEW(house); NEW(powerPlant);
CONNECT(Electricity(house), powerPlant);
NEW(elevator, ElectricalE levator);
HouseConfiguration(house)! InstaliE levator(elevator)

END City;

House- [£~Iiilll~~~
Configuration

Electricity
._. rEi~ci;f6~i:1 ...
:··:..·..~Elevaio(r·····\

~ ••'•• r ••• ~ •••••••• ;;: ,;:; ::; ;;: ;;;; :- ;;; ;;;; :::;: = = = =

component transmission

Figure 4-10. Dynamic component plug-in

By reason of the clear separation of the interfaces and the
implementation of components and the communication­
based interactions, the plug-in and the host component have
shielded execution domains with separate inner processes.
Hence, the execution speed and potential errors in the plug­
in object do not necessarily impair the execution of the
h(mse logic.

4.4 Symmetric Polymorphism

Due to the ability of offering an arbitrary number of inter­
faces, components are inherently polymorphic: each inter­
face represents an independent external facet, without obli­
gating the programmer to define any hierarchy among the

98

facets. For the same purpose, object-oriented languages
generally require programmers to define sub-class relations
by means of inheritance. Apart from the unfounded need of
such type classifications, this approach also often entails
unpleasant technical troubles, such as ambiguities or
conflicts.

These problems can be illustrated by way of an
example, in which different types of vehicles should be
modelled, namely cars, boats and amphibian mobiles.
Again, we first analyse the problems for classical object­
orientation before we focus on how this is approached in
our language.

4.4.1 The Classical Problems

In an object-oriented model, a programmer would usually
classify the vehicles in cars and boats. An extract of the
corresponding program could look like this:

class Vehicle {
public int maximumLoad;
public abstract void DriveO;

}

class Car: Veh icle {
public void DriveO { ... }
public override int MaximumSpeedO { ... }

}

class Boat: Vehicle {
public void DriveO { ... }
public override int MaximumSpeedO { ... }

}

The program should now be extended to additionally
support amphibian mobiles, which feature both the aspects
of a car and a boat. In object-oriented languages, which
only support single-inheritance (and this is the majority),
the programmer may be forced to define one of the
following absurd sub-class relations (see also Figure 4-11):

99

II First work-around:
class Boat: Car { ... }
II should a boat really be a sub-class of a car?

class AmphibianMobile: Boat { ... }

II Second work-around:
class Car: Boat { ... }
II should a car really be a sub-class of a boat?

class AmphibianMobile: Car { ... }

Legend: 0 class ninheritance-relation

Figure 4-11. Hierarchisation dilemma of single-inheritance

It seems obvious that single~inheritance is not suited for
such cases. Therefore, languages like Java and C#
supplement inheritance with a secondary polymorphism
concept, namely interfaces.

With multiple~inheritance (in C++ or Eiffel), the
program above C[Ul be more adequately extended, such that
the amphibian mobile forms a sub~class of the two equiva­
lent base classes Car and Boat (see Figure 4-12). However,
ambiguities and naming conflicts inevitably come up if the
base classes have features with the same names.

class AmphibianMobile: Car, Boat {
public override void DriveO { ... }

}

100

Vehicle

Amphibian­
Vehicle

Figure 4-12. Multiple-inheritance

As for the Drive method, the conflict could be resolved by
overriding the method by a new combined implementation.
However, the two different versions of MaximumSpeed
should be retained, such that they should be renamed to the
methods MaximumCarSpeed and MaximumBoatSpeed in
the sub-class,'l. Still, it remains open how variables of the
multiply inherited base class Vehicle ought to be handled32

:

should different instances of the maximum Load variable be
provided for the Car and Boat functionality; or should the
amphibian mobile rather have only one instance of this
variable33 ?

From a conceptual point of view, multiple-inheritance
may be also put into question in generaL Initially, the pro­
grammer has classified the vehicles into different types of
Car and Boat, and therewith has intended to describe
separate sets (classes) of objects. However, by introducing
the AmphibianMobile, a sub-class (or sub-set) of both the
class Car and Boat is introduced, such that the prior sepa-

31 Eiffcl supports renaming as one way of conflict resolution for mulLiplc­
inheritance [Meyer97, Section 15.2j.
32 A situation like this, in which the same class is indirectly inherited in
multiple ways, is also called repeated inheritance and involves quite
complicated rules [Meyer97, Section 15.4J.
33 In Eiffel, this difference is implicitly determined by whether the feature
is renamed or not [Meyer97, Section 15.4J. llowever, renaming may be
easily forgotten (especially if the features arc non-public), such that the
variable is accidentally shared by the base classes (e.g. maximum Load of
the Car and the Boat).

101

ration of Car and Boat is relaxed. However, a classification
would only make sense if it also results in the definition of
disjoint sets. Otherwise, it is simply an ad-hoc definition of
sets that can be disjoint or may overlap. The type hierarchy
here obviously serves two purposes, splitting a class into
various sub-classes and merging parts of verrious classes
into a common sub-class. This hierarchical class splitting
and merging only involves unnecessary intricacy for
enabling type polymorphism.

4.4.2 The New Solution

The program below sketches the solution in our language.
The AmphibianMobile component offers both the equivalent
RoadVehicle and WaterVehicle. Notably, there is no inbuilt
mechanism of interface refinement provided, because inter­
faces may just as well textually refine the functionality of
others (e.g. the interfaces RoadVehicle and Vehicle). Hence,
a programmer can flexibly refine an interface by augment­
ing or reducing the functionality.

INTERFACE Vehicle;
{ IN Drive liN GetMaximumLoad OUT Load(tons: INTEGER) }

END Vehicle;

INTERFACE RoadVehicle;
{ IN Drive liN GetMaximumSpeed OUT Speed(kmh: INTEGER)}

END RoadVehicle;

INTERFACE WaterVehicle;
{ IN Drive liN GetMaximumSpeed OUT Speed(kmh: INTEGER)}

END WaterVehicle;

COMPONENT Car
OFFERS RoadVehicle, Vehicle;

END Car;

COMPONENT Boat
OFFERS WaterVehicle, Vehicle;

END Boat;

102

COMPONENT AmphibianMobile
OFFERS RoadVehicle, WaterVehicle, Vehicle;
(* own implementation of interfaces *)

END AmphibianMobile;

Roa~~.}.•.·•.·.•...••.•.••·•.·••.•..·•.••.••.·:.iive~ 01lt
w"'''v~ .•......•.•.

Vehicle .::

Figure 4-13. Interface polymorphism

As each component features its own independent imple­
mentation of the offered interfaces, conflicts such as with
inheritance do not occur.

4.5 Flexible Reuse

Our component model enables flexible reuse of implemen­
tations by the relation of hierarchical composition. A com­
ponent can use existing functionality of components by
containing the corresponding components as parts of its
own implementation. On the contrary, object-oriented
inheritance only offers static code reuse in combination
with type polymorphism. 'rhis unfortunate unification of
two substantially different concerns in one concept often
causes logical contradictions and hinders reusability'4.

We resume the vehicle example of the previous section
to show these problems and eventually compare it with our

34 To overcome this problem, mixins ISe90] or traits [SD+031 have been
advertised as a special mechanism that separates polymorphism from code
reusc (ef. Section 2.1.5.4). In our language, no such artificial helper
concept is needed.

103

programming language. More concretely, the vehicles
should be implemented with an internal motor, gear box, as
well as wheels or a propeller, depending on whether it is a
car or boat. The amphibian mobile should thereby reuse
implementation parts of both vehicle types. The following
sub-sections discuss the implementation of this scemrrio,
first for an ordinary object-oriented language and then for
the component language.

4.5.1 The Classical Problems

According to the stated requirements, we assume that the
Car and Boat classes are implemented as follows:

class Car {
public Motor carMotor = new MotorO:
public NormalGears carGears =new NormalGearsO:
public Wheels wheels = new WheelsO:

public CarO { II initialiser
carMotorJorce =carGears; carGears.transmission = wheels;

}
int CurrentPowerO { return carMotor.power; }

}

class Boat {
public Motor boatMotor = new MotorO:
public NormalGears boatGears = new NormalGearsO:
public Propeller propeller = new PropelierO;

public BoatO { II initialiser
boatMotor.force = boatGears;
boatGears.transmission = propeller;

}
int CurrentPowerO { return boatMotor.power; }

}

As the amphibian mobile should be a sub-class of Car and
Boat (for the purpose of polymorphism), we are forced to
also inherit the implementation of these base classes (see
Figure 4-14). Clearly, the amphibian mobile requires a
more specific implementation than just the combination of
all features. For example, just one motor should be inte­
grated instead of reusing both the motor of the Car and of

104

the Boat. In addition, the gear box should be replaced by a
more specific hybrid model, enabling transmissions to both
wheels and propeller.

class AmphibianMobile: Car, Boat {
II inherit two motors and two gear boxes
public HybridGears hybridGears = new HybridGearsO;

public AmphibianMobileO {
carMotor.force = hybridGears;

/* or boatMotor.force =hybridGears? *j

hybridGears.transmission[O] = wheels;
hybridGears.transmission[1] =propeller;

/* carGears and boatGears are redundant *1
}

}

Figure 4-14. Inheritance of undesired Cunctiona Iity

The preceding example also illustrates how easily the im­
plementation of a class may be broken by inheritance: the
CurrentPower methods still refer to their default motors,
even though only one of the two motors is engaged in the
amphibian mobile. To avoid such problems, the program­
mer should rather employ inheritance from abstract classes
or use interfaces, such that implementation can be selec­
tively reused by means of delegation.

105

4.5.2 The New Solution

The same vehicles can be programmed in our language
independent of polymorphism and without risk of encap­
sulation breaches. The corresponding code is delineated as
follows, leading to the runtime structure visual ised in
Figure 4-15:

COMPONENT Car OFFERS RoadVehicle, Vehicle;
VARIABLE

motor: Motor; gears: NormalGears; wheels: Wheels;
(* ... *)
BEGIN

NEW(motor); NEW(gears); NEW(wheels);
CONNECT(Gears(motor), gears);
CONNECT(Transmission(gears), wheels)

END Car;

COMPONENT Boat OFFERS WaterVehicle, Vehicle;
VARIABLE

motor: Motor; gears: NormalGears; propeller: Propeller;
(* ... *)
BEGIN

NEW (motor); NEW(gears); NEW(propeller);
CONNECT(Gears(motor), gears);
CONNECT(Transmission(gears), propeller)

END Boat;

COMPONENT AmphibianVehicle
OFFERS RoadVehicle, WaterVehicle, Vehicle;
VARIABLE

motor: Motor; gears: HybridGears;
wheels: Wheels; propeller: Propeller;

(* ... *)
BEGIN

NEW (motor); NEW(gears); NEW(wheels); NEW(propeller);
CONNECT(Gears(motor), gears);
CONNECT(Transmission[1](gears), wheels);
CONNECT(Transmission[2j(gears), propeller)

END AmphibianVehicle;

The offered interfaces of the vehicles can be either imple­
mented for each component template individually or be
redirected to matching offered interfaces of the vehicle's
sub-components (cf. Section 3.4).

106

Figure 4-15. Flexible reuse by composition

4.6 Safe Concurrency

Concurrency forms a cornerstone of the new programming
language, where components feature their own internal
processes. Due to the structured component relations our
language can offer safe concurrency, excluding unneces­
sary concurrency errors (such as data races and various
kinds of deadlocks). In contrast, classical programming
languages do not encourage well-structured concurrency
but simply provide threads that can operate on arhitrary
objects. Though languages like Simula fDN66, DMN68] or
Active Oberon [Gut97, Mu102, Reali04] provide a much
better integrated concurrency with object-contained con­
currency and inbuilt language support for monitor synchro­
nisation, object activities may still operate on arbitrary
shared objects by invoking methods. Therefore, classical
progrmns generally lack a clear specification of what
objects are potentially directly or indirectly accessed by a
thread or active object, such that these concurrent programs
are inherently susceptible to data races and hard-to-detect
deadlocks.

By means of an example, we demonstrate how the
component language improves the safety of concurrency.
For this purpose, we first concentrate on the classical
object-oriented programming model and discuss the
involved concurrency problems. Subsequently, we solve
the same example in our language and discuss the gained
advantages.

107

4.6.1 The Classical Problems

Most object-oriented languages only offer thread-based
concurrency as an optional feature on top of the classical
sequential execution model. This means that the language
does not necessarily encourage the programmer to write
thread-safe program code, since the default programming
model is still non-concurrent. For instance, if we imple­
ment a collection data structure, we may assume that the
collection is only used by classical sequential code and
therefore, may not prepare the implementation for thread­
safety. For the sake of simplicity, the collection could be
realised as a doubly linked linear list, although the sub­
sequent discussion would also apply to other implementa­
tions.

class ListNode {
public ListNode prev, next;
public int key; public object value;

}

class Collection {
public ListNode first = null;
public ListNode last = null;

public object Get(int key) {
ListNode x = first;
while ((x != null) && (x. key != key)) {x = x.next; }
return x;

}

public void Add(int key, object value) {
ListNode x = new ListNodeO; x.key = key; x.value = value;
x.next = first; x.prev := null;
if (first != null) { first.prev = x; } else { last = x; }
first = x;

}

public void Remove(int key) {
ListNode x =Get(key); Assert(x != null);
jf (x.prev == null) { first = x.next;} else { x.prev.next = x.next; }
if (x.next == null) { last = x.prev; } else { x.nextprev = x.prev; }
x.next =null; x.prev = null;

}
}

108

As nothing is specified about the concurrency assumptions
in the public part of the class above, the user does not
necessarily know that the collection is not thread-safe.
Even if this is known, it is still probable that the collection
is accidentally shared by multiple threads. This is because a
thread potentially accesses an arbitrary set of objects via
method calls. As a consequence, the programmer is princi­
pally unaware of the possible dependencies that might
occur between threads, such that the programs frequently
suffer from unexpected errors, such as data races. Notably,
the ordinary compiler does not even identify potential
unsynchronised parallel accesses on the collection. With
regard to the example, race conditions may lead to incon­
sistent states of the collection (see Figure 4-16) or sudden
runtime errors (see Figure 4-17).

using System.Threading;
class Test {

static Collection collection =new ColiectionO;

public static void RunO {
int key =...;object x =...;
cOliection.Add(key, x);
1* computation *1
collection. Remove(key)

}

public static void MainO { II thread incarnation
Thread x =new Thread(new ThreadStart(Run));
Thread y == new Thread(new ThreadStart(Run));
x.StartO; y.StartO;

}
}

109

Thread 1 (Add):
x =new ListNodeO; II ...
x.next =first; x.prev =null;
II first == null

last:::: x;
first =x;

time axis

Thread 2 (Add):
x = new ListNodeO; II .,.
x.next =first; x.prev =null;
II first == null
last = x;

first = x;

first last i first last first last first last

11 i 1 6/ 6P~ 1 0null !
Thread1.x

T
Thread1.x

T
Thread1.x

T
Thread1.x

next

0 0P;(F
Thread2.x Thread2.x Thread2.x Thread2.x

Figure 4-16. A race condition during concurrent Add-methods

Thread 1 (Remove):
x =Get(1); II x.prev == null
first =x.next;

x.next.prev = x.prev
II null-painter-exception
II (x.next == null)

time axis

Thread 2 (Remove):
x =Get(2); II x.next == null

x.prev.next = x.next;
last = x.prev;

6J;~6?J~~+~
Thread1.x Thread2.x ~ ~ 1

null-pointer­
exception in

Thread 1

Figure 4-17. A race condition during concurrent Remove-methods

Moreover, the iteration over the collection is also not stable
in the presence of multiple threads. If another thread inter­
acts concurrently with the iterating process, the iteration
may not consistently list all entries of the collection (see
Figure 4-18).

110

class Iterator {
ListNode current;
public lterator(Collection c) { current =c.first; }
public bool HasNextO { return current != null; }
public void Next(out int key, out object value) {

key =current.key; value =current.value;
current = current.next;

}
}

using System.Threading;
class Test {
static Collection collection = new CollectionO;

public static void IterationRunO {
int key; object x; Iterator iterator = new Iterator(collection);
while (iterator.HasNext()} { iterator.Next(key, x); II use x }

}

public static void OtherRunO {
int key =... ;
collection.Remove(key);

}

public static void MainO {
Thread x = new Thread(new ThreadStart(lterationRun));
Thread y = new Thread(new ThreadStart(OtherRun));
x.StartO; y.StartO;

}
}

Thread1.iterator Thread1.ilerator

Thread2 calls ~ premature end
Remfe(2) current of iteration

~ 2 n~

I~· ~
Figure 4-18. Unstable iteration

To prevent uncontrolled concurrency overlapping, the pro­
grammer has to very carefully identify all program parts
which could be subject to possible parallel accesses and
thus, have to be synchronised. As for our Collection class,
we could make its implementation thread-safe by employ-

111

ing monitor locks as below35
• It should be also noted that

the collection must be particularly protected during
iteration, since other threads could otherwise incorrectly
interfere with the iterator logic. For this purpose, the pro­
grammer has to indicate when the iteration starts and stops,
in order to lock or unlock the collection for the iteration
process.

class Collection {
public ListNode first;
int iteratorLocks =0;

public object Get(int key) {
lock(this) {/* Get implementation logic */}

}

public void Add(int key, object value) {
lock(this) {

while (iteratorLocks > 0) { Monitor.Wait(this); }
/* Add implementation logic *1

}
}

public void AcquirelteratorLockO {
lock(this) { iteratorLocks++; } II shared locks

}

public void ReleaselteratorLockO {
lock(this) {

iteratorLocks--;
if (iteratorLocks == 0) {Monitor.PulseAII(this); } }

}
}

35 The pattern with the while-loop around the wait condition is crucial in
Java and C#, because the wait condition may already be falsified by a
third-party thread before the woken threads are resumed. Nested monitor
locks on the same object are allowed in Java and C#, i.e. the Get
procedure can be called by Add without leading to deadlock.

112

public Iterator {
Collection coli; ListNode current;
public Iterator(Collection c) { collection::: c; }
public void StartO {

collection.AcquirelteratorLockO;
current::: collection.first;

}
public void 5topO { collection.ReleaselteratorLockO; }

}

Even in the case of single user thread, the collection is not
safe against deadlocks. The following simple deadlock
scenarios are often encountered in practice36

:

public void TestCase10 {
int key =...;object value::: ... ;
Iterator it = collection.GetiteratorO;
it.StartO;
coliection.Add(key, value); II deadlock

}

public void TestCase20 {
int key; object value;
Iterator it = collection.GetlteratorO;
it.StartO;
if (it.HasNextO) { it.Next(key, value); }
II it.StopO forgotten => deadlock

}

To detect data races and simple kinds of deadlocks in
object-oriented or classical pointer-oriented programming
languages, complicated and expensive analysis tools are
needed [ABOl, EA03, VG03, VP04]. However, these static
analysis tools are principally conservative, frequently
reporting correct situations as problems (false positives),
while often missing out real concurrency mistakes (false
negatives) [ABOl, VP04 (Chapter 6)].

36 As for the second scenario, the deadlock risk also remains if the iterator
would automatically release the lock at the end of the list. This is because
the list does not necessarily have to be completely traversed.

113

4.6.2 The New Solution

In the new language, components are inherently designed
for parallel use by multiple external clients. Due to the
communication-based interactions, the execution between
different components is inherently disentangled and syn­
chronised. A process is always encapsulated in one com­
ponent and can not directly operate on other components.
As each client communication is handled by a separate
service process within the server component, a component
may naturally have multiple processes that run at the same
time within its scope. These processes may also con­
currently access the shared resources of the local com­
ponent state and thus need to be explicitly synchronised by
means of monitor protection. In contrast to classical
languages, access dependencies of concurrent processes are
always confined to the scope of a component instance, such
that a programmer has to only concentrate on the synchro­
nisation between the processes inside the same component
instance. Thereby, the compiler of our language always
checks that the processes are indeed sufficiently synchro­
nised and that any kind of data races are excluded. To
illustrate this by way of an example, we implement the
generic data collection in the component language as
below. In fact, an iterator here runs as part of the service
process for the communication, such that no extra helper
object or explicit context saving on the client side is
needed.

INTERFACE Collection;
{

IN Add(key: INTEGER; x: ANY)
(OUT Added lOUT KeyNotFree)

I
IN Get(key: INTEGER)
(OUT Result(x: ANY) lOUT NotPresent)

I
IN Iterate { OUT Entry(key: INTEGER; x: ANY) } OUT Done

}
END Collection;

114

COMPONENT GenericContainer OFFERS Collection;
VARIABLE value[key: INTEGER]: ANY;

IMPLEMENTATION Collection;
VARIABLE key: INTEGER; x: ANY;
BEGIN

WHILE ?Add OR ?Get OR ?Iterate DO
IF ?Add TH EN {EXCLUSIVE}
?Add(key, x);
IF EXISTS(value[key]) THEN !KeyNotFree
ELSE value[key] := x; !Added
END

ELSIF ?Get THEN {SHARED}
?Get(key);
IF EXISTS(value[key]) THEN IResult(value[key])
ELSE !NotPresent
END

ELSE {SHARED}
?Iterate;
FOREACH key OF value DO !Entry(key, value[key]) END;
!Done

END
END

END Collection;
END GenericContainer;

Due to the clear encapsulation, It IS very simple for the
compiler to check the absence of data races within a com­
ponent instance. As mentioned before, direct accesses from
external processes to the local component state are not
possible, such that the compile-time analysis can be per­
formed for each component scope independently. For this
purpose, the compiler requires that all modifying accesses
to component-local variables are protected within an exclu­
sive region. The same has to be ensured for the com­
munications via the required interfaces of the local com­
ponent. Conversely, all other accesses to shared variables
of the component need to be surrounded by at least a shared
lock.

Nested locks in the same process are not allowed in the
language. This is also checked by the compiler by analys-

115

ing the compound statements in a process block37
• If nested

locks would be permitted, deadlocks of the following kind
may occur. As illustrated in Figure 4-19, multiple processes
may hold a shared lock and would then all try to acquire a
nested exclusive lock.

Process 2:
BEGIN {SHARED}

IF x THEN {EXCLUSIVE}
(* cannot enter because

process 1 holds shared
lock*)

time axis

Process 1:

1
BEGIN {SHARED}

IF x THEN {EXCLUSIVE}
(* cannot enter because

process 2 holds shared
lock*)

"\ deadlock

Figure 4-19. Deadlock risk of nested locks

Moreover, other types of deadlocks can be eliminated in
our programming language. For instance, it excludes inter­
action deadlocks between two components that communi­
cate over one interface. Regarding the example of the
collection, a shared lock can be safely maintained during
the iteration process without danger of deadlocks. This is
because the communication protocol ensures that only valid
interactions are made during the iteration, Le. no element
can be added in the meantime by a client and a complete
iteration has to be done. Hence, the deadlock scenarios of
the previous section are banned, since they would violate
the protocol, as illustrated below:

COMPONENT User REQUIRES Collection; (* ... *)
BEGIN

Collection! Iterate;
Coliection!Add(key, value) (* protocol violation *)

END User;

37 If procedures are supported inside a component, the following rules
must hold for synchronisation: (1) A procedure, which contains a
synchronisation attribute, cannot be called from another protected region.
(2) A procedure may modify and read shared resources without lock, if it
is only (directly or indirectly) called from a sufficiently protected region.
As procedures can only be called from inside a component, the static
analysis is limited to the scope of a component instance.

116

COMPONENT User REQUIRES Collection; (* ... *)
BEGIN
Collection! Iterate;
IF Collection?Done THEN Collection?Element(key, value) END;
(* protocol violation: communication not properly terminated *)

END User;

However, the new programming language does not prevent
all kinds of deadlocks because this would require us to
restrict the structural flexibility of the language. As out­
'lined in Figure 4-20, component structures with a cyclic or
a split-and-join topology may indeed lead to deadlocks. For
programmers willing to limit themselves to acyclic com­
ponent structures, Appendix C presents three simple rules
to exclude deadlocks. However in this language, a com­
ponent always has the ability to control the interface con­
nections of its contained components and therewith, the
structural dependencies. Due to the formal communication
protocols, a programmer also has a clear knowledge about
the possible dependencies of connected and communicating
components. This helps to more carefully plan cyclic
relations between components and to avoid deadlocks,
which are usually promoted in classical languages by insuf­
ficiently specified program dependencies.

.............
("

A
wait dependency. .

......~

B

.........

A

A is locked and waits for a message
from B, B waits for C, C for 0, and 0 for
A, which is however locked.

C is locked and waits for a message
from B, B waits for A. A awaits a
message from 0 and 0 from C. which is
however locked.

Figure 4-20. Potential deadlocks

117

4.7 Implementation Independence

Although our programming language supports the imple­
mentation of components to the smallest granularity, we
also permit that terminal components (components which
do not contain sub-components) can be implemented in any
conceivable language. This is a particular flexibility
resulting from the clear separation between the interfaces
and the implementation of the components. Hence, a safe
way of interoperability with other programming languages
can be enabled. For example, this allows us to implement
low-level components (e.g. device drivers) with machine­
specific code38

• One of the benefits of this approach is that
our programming language can be kept general and flexi­
ble, without having to incorporate any low-level or special­
purpose programming features.

It is left open to the concrete runtime system, how the
interoperability with other languages is regulated. The run­
time system may for example provide a specific component
development interface or framework for the other
languages. Typically, the following basic functionality has
to be offered by such an interoperability mechanism:

• Registration of new types of terminal components
that are implemented in the specific other
language.

• Handling of external lifetime events such as
creation and deletion of components.

• Support of component cloning and introspection39
•

• Generic communication commands for sending
and receiving messages via a component's offered
or required interface.

38 We ourselves make use of this flexibility for the runtime system which
is implemented as a terminal component itself (see Section 5.1.4).
39 In this programming model, introspection (or reflection) is the ability to
query the offered and required interfaces of a component at runtime.

118

Chapter 5

The Runtime System

Our programming language does not only offer a new
paradigm of abstraction, but also poses new challenges for
its implementation. To demonstrate that the language can
be implemented with high efficiency on today's computer
machines, we have built a new runtime system that
supports the concepts of our language particularly well.
Thereby, the primary use of concurrency and the pointer­
free components set new requirements for our runtime
system:

• High degree ofconcurrency
The system should support a very large number of
parallel processes40

, as many as possible. It should
radically surpass ordinary operating and runtime
systems with regard to the degree of concurrency.

• High-performance concurrency
Concurrency should be very efficient, with par­
ticularly fast execution and high reactivity of all
processes. All kinds of context switches have to be
performed at very low costs. With regard to con­
current programs, the execution performance of

40 The tenn process is used in its general sense and does not mean an
isolated UNIX-like process.

119

the runtime system should be significantly higher
than in classical systems.

• Compactness and robustness
With a simple design and careful implementation,
the runtime system should be very compact and
reliable. It has to guarantee full memory safety
and should discard any superfluous artefacts, such
as garbage collection and virtual memory man­
agement, which are no longer needed for our pro­
gramming model.

It turned out that these requirements can not be adequately
met if we use an ordinary operating system as a basis of our
runtime system. This is because current operating systems
only support very limited concurrency, with a maximum
value of about 10,000 processes (threads) and with ineffi­
cient parallel execution, based on expensive synchronous
and asynchronous context switches. Classical systems also
impose unnecessary and obstructive infrastructural ele­
ments for our language, such as automatic garbage collec­
tion.

Due to this situation, we built a new small multi-proc­
essor kernel for our runtime system, such that the system
can directly run on a conventional computer machine (off­
the-shelf personal computers). As a result, our system
offers the following highlights:

• The system supports millions of parallel processes.

• The execution speed of concurrent programs is by
an order of magnitude faster than conventional
languages and systems.

The abovementioned high scalability and performance is
mainly due to the following technical innovations:

• Fine-granular stacks
Processes are extremely light-weighted, with
stacks that can have arbitrarily small size. In
general, stack sizes do not need to grow and
shrink at runtime, because the programming
model uses communication instead of method

120

calls. Due to the fonnal protocols, the size of a
communication buffer can be statically deter­
mined and pre-allocated with a defined capacity.

• Preemption without timer interrupts
Preemptive execution of processes is realised by
instrumented code that is automatically inserted
by the compiler at required points. Processes can
therefore share the processors with guaranteed
time slices of arbitrarily small size. Due to the
"synchronous" process switches, no unnecessary
register backups have to be taken for preemption.

• No garbage collection
The system ensures memory safety without need
of automatic garbage collection. This is because
the time for the memory deallocations is exactly
defined by the hierarchical compositions. Hence,
unexpected system disruptions by a garbage col­
lector can be excluded.

• No virtual memory
Virtual memory management (paging) is also no
longer used, such that a general speedup on
memory accesses is gained.

The entire runtime system (with the kernel) has a very
compact size of less than 200KB in total and should be
correspondingly reliable. We used the ADS kernel [MuI02]
with its institutionalised active object [Gut97] and monitor
[BH73, Hoare74] concepts as inspiration for the design and
implementation of the kernel. Some code parts for device
drivers and machine initialisation were adopted from ADS,
though with very careful revision (see Section 5.4). The
substantial part of the kernel is however new, in particular
the heap and concurrency infrastructure with the above­
mentioned innovations. In this chapter, we explain the
design and implementation of the system and give a
rationale for it. Empirical results in the form of experi­
mental measurements and comparisons with other systems
are presented in the next chapter.

121

5.1 Overview

Our system establishes a runtime environment for com­
ponents, by representing itself also as a component that
already pre-exists as a first instance (see Figure 2-3). The
system component thereby runs together with application
components in a network and offers necessary system inter­
faces, such as for loading, execution, and runtime intro­
spection of components. The internal architecture of the
system consists of a generic micro kernel and the com­
ponent runtime support.

In the following sections, we give an overview of the
system by describing the model of compilation and execu­
tion as well as the target platform and implementation
language of the system.

Figure 5-1. System structure

5.1.1 User Interactions

Unlike classical programming languages or systems, the
component model does not engage the metaphor of
"starting a program". Instead, the system enables users to
directly create components in the global system scope and
to connect their interfaces. With appropriate connections, a
component automatically begins to run and interact. This
continues as long as the component is not deleted. Figure
5-2 demonstrates how one can for example create and
delete components via a user interface. The interface has
been deliberately kept simple, as we focus in this work on
the runtime system. For this purpose, the screen is divided
into two sections, one for input and one for output. Both

122

sections run independently, Le. output can be written con­
currently while the user is typing input commands. An
initial configuration of components may be also defined by
a script of such commands, executed on system start-up.
The user commands (cf. Appendix B) are largely equiva­
lent to the corresponding statements in the component
language, except that the identifier for a created component
does not have to be declared as a variable. For example, the
identifier I is implicitly associated to the created instance of
the PublicLibrary component. As a result, the user can
connect the interfaces of I to other components and may
also directly communicate with the component, by sending
and receiving messages.

1.

user { NEW(I, PublicLibrary)
input NEW(c, LibraryCuslomer)

interface Book
interface Booklnitialization
interface Library

system component UbraryBook
output -< done

loading
component LibraryCustomer

done

3.

Customer(c) !ReadBook(54322)

Customer running
Book ISBN 54322 borrowed
Book ISBN 54322 read
Book ISBN 54322 returned

2.

CONNECT(Library(c), I)

Customer running

4.

DELETE(c)

Customer running
Book ISBN 54322 borrowed
Book ISBN 54322 read
Book ISBN 54322 returned
Customer c deleted

Figure 5-2. Sequence of user interactions with the system

5.1.2 Compilation

In our setting, the runtime system is not identical to the
development system. Programs of the component language
are written and compiled on the development system, while
the code can be directly loaded and executed in the runtime
system. As the compiler of the component language is pro-

123

grammed in Oberon, the programmer may use Native
Oberon [WG89], AOS [Muller02] or WinAOS [Fried07] as
the development system.

In order to have a compact and efficient runtime
system, the compiler translates the component programs
directly into machine code that can be loaded and executed
by the runtime system. The internal structure of the
compiler is outlined in Figure 5-3. To support portability,
the compiler has been designed with a generic module
interface for the code generation, such that different imple­
mentations for the specific machine platforms can be used.
To port the compiler to a different platform than IA32, it
suffices to only replace the two modules CClx86CG and
CClx86A. The main code generator in module CCGenerator
does not produce specific machine code and can be reused
for other platforms.

component compiler

I comp9g§ptP8ri1'pil&FI compiler user interface

iQCGeOQfl:ltor Igeneric code generator

generic compiler
logic

_____c"'"G"'".'C1"'".ffii;)"'"6"'"ke"'"r~=1semantic checker

_____C_C~lm"'"p"'"qrt"'"i,¢"'"t~=1 ~~~O;~~~f~~~e:oa~~~~~

~~c_c_p_a"'"($"'"·.·iB."'"r·~"""·Jsyntax parser

_~C_C","Sc","a","h","he","i~","llexicalscanner

CClx86C1<a· ····/!/IA32 code generator
machine-specific { I
generator ,..,...",..-----",---",---",=1

.~~~C_GI_x8_6_A"-· ~""". IA32 assembler code

generic compiler~ I CCIR Iintermediate program
structures . . representation

Figure 5-3. Modular structure or the compiler

5.1.3 Target Machine

We have implemented the runtime system on a conven­
tional PC-compatible IA32 machine [IA32], with the

124

support of multiple processors. This platform has been
chosen because it currently is one of the most prevalent
computer machines and thus allows us to use our language
on most machines in operation.

However, we also looked to see whether other machine
architectures could offer us substantial advantages for the
implementation. This is not really the case for the today's
machines, as they all have approximately the same poor
support for fine-granular concurrency. This is because the
machine design is mainly optimised for classical procedural
execution, while light-weighted processes and efficient
concurrency control remain largely neglected. As a result,
the operating system designers have to arrange the process
structures, context switches, mutual exclusion, waiting
queues, fine-granular stacks, communication channels,
memory coherency etc. on their own, with no or very little
help from the underlying machine and with the corre­
spondingly poor performance. In the case of more
advanced architectures, such as computer clusters, the im­
plementer has to additionally address the explicit distri­
bution of processes among the different machines in the
cluster, which is particularly inefficient for fine-granular
and frequently synchronised processes. Instead, it would be
desirable that future computer machines rather offer
improved support of concurrency, by providing adequate
functionality for fast process switches, flexible stack man­
agement as well as efficient process synchronisation and
communication. In particular, synchronisation should be
realised as fast as normal sequential instructions. To
achieve this, an extensive use of cache hierarchies would
no longer be reasonable.

With regard to our requirements, the IA32 machine is
obviously not an optimal architecture but at least, it is one
of the most widespread platforms.

5.1.4 Implementation Language

In our system, normal application components are pro­
grammed in the new component language. The system

125

component itself has been implemented in another
language, namely a rather machine-close programming
language that is a reduced version of Oberon [Wirth88].
Here, we intentionally make use of the freedom of the
component model, which permits any language for the
implementation of terminal components (the system indeed
forms such an instance). Obviously, our language would be
inappropriate for implementing the runtime system on the
chosen computer platform, as the primitive machine
concepts can not be directly mapped to the high-level com­
ponent abstractions, in order to express the system in terms
of itself. Therefore, a language like Oberon is a much better
choice for this purpose, seeing that the language concepts
mostly correspond one-to-one to the underlying low-level
representation, such as for example the defined memory
layout of data types and the procedural execution. The used
Reduced Oberon distinguishes itself from traditional
Oberon insofar that explicit deallocation of heap blocks is
required, using the newly introduced DELETE-statement.
Since automatic garbage collection has become superfluous
for our component-oriented programs, it would be unrea­
sonable to only employ it for the implementation of the
runtime system. Instead, the runtime system has been very
carefully programmed and tested to be memory safe.

5.2 Component Support

The runtime infrastructure for the component support may
be schematically described as in Figure 5-4. The compiled
metadata and machine code of the component language can
be directly loaded into the runtime system. The code only
performs the primitive expression evaluation and execution
branching, while more complex operations (such as com­
ponent creations, message sending and receiving) are
realised by invoking procedural system calls. Hence, the
compiler does not need to make any assumptions about the
specific implementation of the component structures, the
process management and the message communication

126

inside the runtime system. As a result, the intemal repre­
sentation of the component structures may be flexibly
replaced or varied in the runtime system without affecting
the compiler.

component mctadata &
language 1-+-1 .•.. COITlpiler, 1--+11 machine
soo~e c~e

Figure 5-4. Schematic runtime architecture

The runtime system for components only involves an
implementation with a code size of 160KB. The system
runs on top of the elementary runtime model that is offered
by the underlying micro kemel. The component-specific
runtime support is organised in the Oberon modules
depicted in Figure 5-5, which are linked as part of the dedi­
cated system component (see Section 5.1).

component runtime support

............;.;....;.~C~o_n~so.;.;;Ie.;.;;···· .;.;....;.=, user interfacc

program loader

............;.;....;..;.;....;..;.;....;..;.;....;..;.;....;..;.;;.,'"","'":llroUgnjt'cimfocr sctorUmCplUornCeSn3tsnd__ RUntime .

Collections Idynamic componcnt...........-----.;.;....;..;.;....;.=. collections

Figure 5-5. Structure of the componenI runIime support

127

5.2.1 Program Loader

The intermediate code of a component template or interface
specification is automatically loaded "on demand", when
the corresponding component or interface is used for the
first time by the system user or another loaded code.
Notably, the loaded units of intermediate code may have
cyclic dependencies, as a component or interface can be
described by using the identifiers of other component
templates or interface specifications. Therefore, the system
supports automatic loading of intermediate code units, even
with cyclic use-dependencies. For this purpose, the loading
algorithm involves two phases: a first phase collects the set
of all component templates and interface specifications that
are directly or indirectly used by the code to be loaded. In a
second step, the system loads and atomically activates all
these collected program units.

5.2.2 Memory Model

The runtime system features a very simple and uniform
memory model. All kinds of program structures, such as
components, processes, stacks, collections and communi­
cations are organised as memory blocks in the heap, as
illustrated in Figure 5-6. The dynamic relations between
these blocks are internally represented by memory
addresses, such as for the interface connections, hierarchi­
cal compositions, entries in dynamic collections, and com­
munication channels. The block of a component instance
contains a slot for each offered and required interface,
which is used to store the necessary interface connections.
Such a connection either refers to another interface slot or
to the program code of a service process, if it forms an im­
plemented offered interface. Process blocks only need
small memory space for context switch backups. In the
case of a service process, the process block also includes
the space for the communication buffer that is used
between the service process and its individual client. The
specific implementation of the processes, collections and
communication is described in the following sections.

128

required
interface[j]

waiting
processes

offered ..
interfaces

required
interfaces

server comm.

component
instance

component
instance

component
descriptor

name

Figure)-6, Memory representation of the component structures

5.2.3 Process Stacks

The use of very fine-granular process stacks is one of the
main reasons, why our system offcrs such a high degree of
concurrency. More specifically, a stack is no longer
regarded as a large contiguous pre-allocated memory block
of bound maximum size but rather represented as a linear
list of heap blocks of arbitrary size, such that the stack can
dynamically grow or shrink. Fortunately, the new program­
ming language docs not require frequent dynamic stack
extensions, as the programming language only uses com­
munication-based component interactions in place of
method calls. In our language, procedures can only be used
inside a component instance, such that the processes

129

usually involve much shorter stacks than in classical
object-oriented languages.

For each process, the backend compiler determines an
individual initial stack size with a small reserve up to 640
bytes, to support the most frequent procedural system calls
on the initial stack. For more complex system ca11s (opera­
tions on large dynamic collections), the SL:'lck size has to be
dynamically increased and decreased during execution (see
Figure 5-7). The stack may naturally also grow during the
procedural execution, which is only allowed within a com­
ponent. For this purpose, a small runtime check is instru­
mented at the entrance of a procedure, to determine
whether sufficient stack space is present. If not, a new stack
block with compiler-calculated size has to be allocated in
the heap and linked to the previous stack block. The local
data of a procedure however remains accessible via the
base pointer, since the calling procedure (caller) always
keeps sufficient stack reserve for the local variables of its
directly invoked procedures (callees)41. This saves expen­
sive copying of the procedure arguments in the case of
dynamic stack extensions. When the procedure eventually
returns, its extra stack block is deallocated in the heap.

41 As no virtual procedure calls are needed in our language, the set of
potentially called procedures can be easily determined within each
component scope individually.

130

stack extension
)

param

callee state

ESP'-+f-,~"-i

EBP-+f-,-"-i

locals

param

~
•..•. y>

ESp».·.···.···.···..•··.·.'.··..··•.·.·•·.·•·..
param

param

locals

stack extension

~...

"'.'..'.•.•.....•.."'.'.'.'•..".'•."'..'•.....•..•...•....'.•.'.•...••............•..•......•..•......•.•...•'......•..•...•......>':'::"::":'<.'::"."::',::::

ESP ······'··············

locals

param

caller state
ESP'.........~""i

(
stack reduction

Figure 5-7. Dynamic stack extension and reduction

5.2.4 Dynamic Collections

As for the implementation of the language-inbuilt dynamic
collections, the most important criteria for a corresponding
data structure are both compact memory representation and
fast element accessibility. For this purpose, we have im­
plemented the collections as adaptive hash tables with a
hash function that is defined on the indexes of the dynamic
collection. Each entry of the hash table has sutIicient pre­
allocated space to store an clement of the collection. There­
fore, elements can be inserted without requiring a dynamic
allocation, which would be relatively expensive due to the
necessary synchronisation of the heap. Elements with col­
liding hash function value are stored in other free entries
and are linked together in a linear collision list (see Figure
5-8).

The size of the hash table is increased by a factor of
approximately two, as soon as two thirds of its space is
occupied. The size is always chosen such that it is not
divisible by a small prime number. This ought to prevent
frequent collisions of the hash function which is computed
from the value of the clement index modulo the hash table
size. If less than a third of the entries are occupied, the hash
table is again reduced to approximately half its size.

Besides the dynamic collections, the runtime system
also employs collections behind the scenes, if a component

131

reqUITes a dynamic number of interfaces with the same
name.

collision

hash table
x9

a index 141 value ~

2
empty

) index 9 1value

10 index 7 1value Jize
empty

index 211 value

index 6 1value

inde

~
modu

table s

Figure 5-8. Data structure of a dynamic collection

5.2.5 Communication Mechanism

As the internal runtime model of the component structures
is independent of the compiler and programming model,
any implementation of communication channels could be
supported, regardless of whether for local or remote com­
munication. The currently implemented local communica­
tion channels use a conventional bounded FIFO message
buffers with small size. By analyzing the largest message
declaration in the communication protocol, the maximum
size of the message entry in the buffer can be determined
statically. Therefore, it is possible to pre-allocate a buffer
with a defined buffer capacity, where the buffer capacity
may vary for each communication. Measurements have
shown that small sizes of about four elements are mostly
sufficient, because processes can be scheduled in relatively
small time slices due to the fast context switches and there­
fore, a message typically only remains buffered for a short
time.

The fulfilment of the protocol is dynamically
monitored for each channel. For this purpose, the backend
compiler encodes the protocol of each interface specifica­
tion as a finite state machine. This allows efficient runtime
checking of the protocol, by only involving one read- and
write-operation per send-statement. By using an example,
Figure 5-9 shows how a protocol is translated in a finite

132

state machine. This can be efficiently represented in the
memory as a transition table per interface specification.

{
IN Checkln
(

OUT AssignedRoom
{ IN EnterRoom IN ExitRoom } .--l\
IN CheckOut OUT Bill ~

[IN DirectPayment 1
I

OUT FullyBooked
)

}

Figure 5-9. Encoding a protocol as a finite state machine

A service process is automatically incarnated in a com­
ponent as soon as an external client component performs
the first command of communication for the corresponding
interface. When a process waits for the reception of a
message or a non-full communication buffer (in the case of
sending), it is internally registered at the communication
buffer, such that it is immediately reactivated when the
communication partner has changed the buffer state. The
system ensures that at most one process is waiting at the
same time for the same communication. Otherwise, the
server and client process would be deadlocked, which is an
error in the component program. A communication can be
terminated when the client component is finalised or has
sent the last message to the server side.

5.2.6 Memory Deallocations

Thanks to the concept of hierarchical composition, all run­
time structures have a precisely defined deallocation time
(ef. Section 3.3). The deletion of a component instance
immediately leads to the deallocation of all inner com­
ponents and connections among them, as well as the
deletion of inner collections. A component can only be

133

deleted after all communications with it have been termi­
nated. When a service process reaches the end of its
statement sequence, it first awaits the termination of the
client-side communication and then frees the associated
communication channel. Of course, components or collec­
tions belonging to the scope of a process are also deallo­
cated at the end of a process. Therefore, heap memory is
explicitly managed by the runtime system without need of
an institutionalised garbage collector to ensure memory
safety. External fragmentation of the heap is possible but
remains low in practice, because of the fast merging facility
that is implemented in the underlying heap system, see
Section 5.3.4.

5.2.7 Concurrency Model

The language abstraction of components and their internal
processes are mapped to shared resources and light­
weighted processes in the runtime system. Thereby, syn­
chronous context switches of the processes involve very
low costs, as only three registers (program counter, stack
pointer and frame pointer) have to be saved and restored by
the runtime system. Wherever a synchronous switch is
generated in the code, the compiler already ensures that the
other registers are not in use. Naturally, this requirement
must be also fulfilled by any compiler optimisation. In our
system, preemptive scheduling of processes is not imple­
mented by conventional hardware interrupts but with a new
technique of code instrumentation, which is discussed in
the next section.

Processes operate directly on the corresponding shared
resource of their enclosing component, by using the
monitor protection (with both exclusive and shared locks).
The monitor-like shared resources are implemented with
two local waiting queues (see Figure 5-10), one for
processes waiting for an exclusive or shared lock and one
for all processes that are waiting on a Boolean condition
(by the AWAIT-statement). The prioritisation among
processes follows the so-called eggshell model [MuI02]. In

134

order of priority, processes with a fulfilled await-condition
gain access to the resource, then processes waiting for the
entrance with an exclusive or shared lock. This is imple­
mented by checking the waiting queues when a process
releases the monitor lock (AWAIT-conditions can only be
satisfied at the release of an exclusive lock). If the
condition is fulfilled for a waiting process, the correspond­
ing process directly obtains the corresponding lock. In
order to avoid potential starvation problems among reader
or writer processes, a first-come-first-served strategy is
used for the processes entering into an exclusive or shared
regIOn.

ready processes

running processes

Legend: 0 process 0 component ---.. pointer

Figure 5-10. Internal representation of concurrency structures

In addition, components feature extra waiting lists for
processes, which wait for a specific virtual time (cf. Section
7.2.1), or for external events such as finalisation of a sub­
component. As for the processes waiting for a certain
virtual time, the processes are sorted in the waiting list by
their virtual time. In the case that the virtual time of com­
ponent should be kept synchronous with the super­
component, the passive process is directly registered at the
corresponding super-component.

135

5.2.8 Software~Based Preemption

As a further innovation, the concurrency model does not
prejudice a specific preemption mechanism. It may be
realised by hardware interrupts or by code instrumentation.
The latter is a novel technique which has been engaged for
our component language. The compiler directly inserts
small checks in the machine code, which continuously
monitor the runtime of the process and initiate the preemp­
tion after a defined time interval. It should be noted that
processes are not programmed for cooperative scheduling.
The runtime system always guarantees time-sliced
scheduling, which seems preemptive from the program­
mer's standpoint. Beneficially, the software-based preemp­
tion permits substantially cheaper context switches. In
particular, no unnecessary state backup of all registers has
to be taken on preemption because the compiler exactly
knows which registers are in use and have to be spilled on
the stack before preemption. As a consequence of this opti­
misation, processes do not require extra reserved memory
for storing the backup. This design decision is another
decisive reason for the high number of processes supported
in the system.

In detail, the software-controlled preemption works as
follows. For each process, the machine code is instru­
mented within extra instructions, which test how long the
current process is running since the last context switch. If
the process has run for a certain maximum period, the code
only stores the necessary state and immediately launches
the preemption of the process. To guarantee that the limits
of a time slice are fulfilled, the checks need to be continu­
ously executed in small time steps. Therefore, the checks
are inserted at the following places:

• in the body of each loop statement (WHILE,
REPEAT, FOR and FOREACH)

• at each procedure entry

• after each statement sequence of a maximum (worst­
case) runtime

136

To determine when a process needs to be preempted, the
runtime is measured by the timer interrupt and a reserved
register (EDI42 in our system) is set when the process
should be preempted at the next check. It would be also
possible that the process directly maintains a counter for
the maximum worst-case execution time which is appropri­
ately incremented by the instrumented code.

The current implementation of a check only requires a
. few simple instructions (see Figure 5-11) and we measured

that the total cost of preemption checks is on average less
than 0.5% of the total program runtime. In most cases, no
registers are to be stored at the point of a preemption check,
because the checks are inserted at the end of a language
statement. Therefore, the preemptive context switch usually
remains as efficient as a synchronous context switch for
waiting on a monitor entrance or on an AWAIT-condition.

check", CMP EDI, 0
JE continue
,save used registers
CALL Preempt
, restore used registers

Continue:

Figure 5- I 1. Preemption check (in IA32 assembler)

5.2.9 Smart Scheduler

It is well known that process synchronisation is quite
expensive on today's computer machines due to the
required synchronisation of the processor caches. In fact,
the costs of synchronisation grow with the number of
involved processors (see Table 5-1). Therefore, one can
only gain from parallelism on current machines if the
system uses long-running nearly independent processes,
which need no or only very occasional mutual synchro-

42 The register may nevertheless be used in short-lasting execution (with a
limited worst-case runtime). In this case, the compiler has to backup and
restore the register (e.g. on the stack).

137

nisation. However, our programming language encourages
a model of fine-granular interacting processes. Therefore,
we equipped our system with a smart scheduler that only
schedules processes in parallel, if they indeed run faster on
multiple processors. To determine this, the system continu­
ously measures the amount of synchronisations per time
period. If the synchronisation frequency exceeds a certain
threshold, the overheads of synchronisation outweigh the
gain of parallelism and it is more efficient to temporarily
schedule the corresponding processes in a serial but time­
sliced way on a single processor.

execution time 1 CPU 6CPUs slowdown
(in nanoseconds) factor
atomic increment 32 620 19
atomic exchanae 32 620 19
spin lock 73 4000 55

Table 5-1. Costs of synchronised instructions, in nanoseconds
(rounded to two figures), 6 Intel Xeon 700MHz processors,

the instructions operate on the same memory word

5.2.10 Interoperability

Currently, the runtime system supports both the
Component Language and Reduced Oberon as implemen­
tation language of terminal components. More languages
could be added but the current selection of languages is
quite appropriate for our needs. Naturally, we want to
promote the new language as the standard implementation
language for components. Only for very specific low-level
tasks (such as implementation of device drivers) may the
implementation in Reduced Oberon be necessary. The
assurance of the memory safety remains the responsibility
of the corresponding implementation language. For
example, memory safety has to either be ensured by the
language (such as for the Component Language) or has to
be explicitly trusted after careful analysis (such as for
Reduced Oberon). The runtime system offers a predefined
programming interface in the module Runtime for the im­
plementation of terminal components in Reduced Oberon.

138

5.3 Micro Kernel

The micro kernel manages the elementary machine
resources (processor power and memory space) and also
provides elementary runtime support (memory heap and
process scheduling) for the implementation of the com­
ponent runtime system. The micro kernel with 6SKB image
size is much smaller than the component runtime support
and consists of the modular structure depicted in Figure
5-12. Specific device drivers such as for the keyboard and
tIle system arc to be provided on top of the kernel.

micro kernel

{

C 'I' light-weighted processesoncurrency ,
elementary "'-'--"'-'--_...............,;."'-'--""" and shared resources

runtime system Iexplicitly managed heap
Heap

memory

{

_,lnt....c""rru"",.·,.,.P\""A';""'",.="",">1 interrupt management

~:~:;~~~;~source Memdry »1 ~h1:~~~:een~ory

Processors '.1 multi-processor
___"'-'--"'-'--"'-'--....", management

Figure 5-12. Modular kernel structure

The kernel design is inspired by AOS [Mul021, though we
have implemented it for more generic runtime support (not
fixed to a classical programming model) and in a more
compact form. Parts of the low-level code for the processor
initialisation, memory segmentation, interrupt setup, key­
board and file system driver were adopted from AOS,
however with careful revision. A list of the most important
technical differences can be found in Section 5.4.

5.3.1 Multi-ProcessorManagement

The first (lowest) kernel module is Processors, which
supports and manages the existing (single or multiple)
processors on the machine. It includes elementary spin
locks for the mutual exclusion of processors in very short

139

critical sections. Alike ADS [Mu102], the locks can only be
acquired in the linear order of the module-import hierarchy,
to exclude deadlocks.

5.3.2 Generic Memory Management

The second module Memory implements generic manage­
ment of raw main memory resources. Contiguous memory
regions can be acquired for individual purposes, such as for
one or multiple memory heaps or for driver-specific
memory-mapped I/O. The main intention of this generic
memory model is that the kernel could also support other
programming languages in parallel with our component
language. As a result, the specific other languages could
have a runtime system which uses its own managed heap or
particular stack space independently of the component run­
time system. In contrast to ADS, which only support up to
2GB main memory, the new kernel is able to use the
complete memory.

On an IA32 machine, memory segmentation is always
provided as a feature that can not be disabled. Therefore,
the Memory module sets up a minimum segmentation con­
figuration, which serves at the same time to detect NIL­
traps by the hardware. For this purpose, a NIL-pointer is
represented as memory location that is beyond the available
memory space of the defined segments. Naturally, the
compiler of the kernel is also prepared to insert explicit
NIL-checks in the code, if the system would be used on a
machine that does not require or offer memory
segmentation.

However, virtual memory management is optional and
no longer used in our system. It can be identified as a
redundant infrastructural element that only promotes design
decisions which are not accurate anymore for our pro­
gramming model:

1. Concurrency is only based on light-weighted
processes, which share one address space. As the
processes are written in a memory-safe program-

140

ming language and only interact in a well struc­
tured way, mutual isolation of processes by means
of separate address spaces has become superfluous
and impedimental for flexible process interactions.

2. Virtual memory often tempts system designers to
realise procedural stack overflow checks by the
machine-inbuilt paging mechanism. However,
stacks then become unnecessarily heavy-weighted
with a granularity fixed to page sizes. Stack man­
agement then also involves extra complexity due
to the separate allocation in a different page­
aligned memory space.

3. NIL-checks can be just as well implemented by the
existing memory segmentation mechanism or by
explicit instrumented checks.

4. Unnecessary complexity of distinguishing
between virtual and real addresses (e.g. in
drivers), as well as the effort of translation can be
avoided, which is more considerable in a 64-bit
address system.

5. Our runtime system is implemented in a memory­
economic way, such that the real memory on
current machines is sufficient to even execute very
large program instances. In fact, the size of real
memory on current 32-bit machines is often in the
same order of magnitude than the virtual memory
space, such that we could not profit from
swapping. In addition, swapping usually involves
unexpected and undesired latencies in the memory
access time.

5.3.3 Interrupt Management

As a third elementary machine resource, software and
hardware interrupts are supported by the kernel module
called Interrupts. The protected processor mode is therein
activated, such that an interrupt runs on a higher privilege
level and on a separate kernel stack which is reserved for

141

each processor. The latter is actually the decisive reason for
using the protection mechanism: an interrupt must not be
executed on the stack of an application process, since the
process' stack may be arbitrarily small.

5.3.4 Heap Implementation

Heap memory is the first infrastructure of the elementary
runtime system, based on explicit free memory manage­
ment. The heap permits direct allocations and deallocation
of heap blocks that can have arbitrary size. The implemen­
tation is kept most generic and uniform: in contrast to other
operating systems, the heap does neither distinguish artifi­
cially between block types (such as record, array, or type
descriptor blocks) nor does it require particular meta-data
for the heap blocks. The memory representation of heap
blocks is thus as simple as illustrated in Figure 5-13.

size

free heap block
0

size IF",1
~ prevo free block
8 next free block ..
4

size

size

size -

size IF",O

data

size

occupied heap blocko
4

size - 4

F", free flag

Figure 5-13. Heap blocks

Free memory is managed by segregated free lists, each
storing free blocks of a defined size range. One free list is
reserved as a collective list for all huge free blocks. To
reduce external fragmentation, consecutive free blocks are
immediately merged on deallocation. Allocation and deal­
location are very efficiently implemented and only involve
constant time, unless a huge block of the collective free list
has to be allocated. This is possible because the allocation
can directly extract a heap block from the free list which
has a size range larger than or equal to the requested one. If
that list should be empty, only a constant number of free
lists for larger block sizes have to be consulted. Internal

142

fragmentation is thereby avoided, by splitting the unused
part of a free block and inserting it in the corresponding
free list. On deallocation, the neighbour blocks can be
directly determined (due to size information at the
beginning and end of a block) and merged if they are free.
Sorting the blocks in a free list is hence not required.

The heap is designed to be generic and not to prescribe
a specific model of memory management. For instance, the
heap can be explicitly managed like in our language, where
hierarchical compositions permit direct memory dealloca­
tions in a safe way. It is however also conceivable that the
heap is used for another language, which requires auto­
matic garbage collection. The collector would then have to
run as a client of the heap, explicitly deallocating non­
reachable heap blocks.

5.3.5 Concurrency Implementation

The elementary runtime support for concurrency is based
on particularly light-weighted processes. The concurrency
infrastructure is deliberately kept generic, not prescribing
any specific process layout or synchronisation model (e.g.
monitors). These issues have to be implemented by the
specific runtime system. The basic concurrency infra­
structure only provides the basic logic for process switches
and process schedulers. The mechanism of preemption is
left open to be either performed by timer interrupts or on
instrumented software code (Section 5.2.8).

The kernel supports different stack implementations.
Depending on the specific runtime system, a stack can be
represented as either a single block of fixed size or a linear
list of blocks (as used in our runtime system). For the first
case, stack overflows can be determined by software
checks at the entrance of a procedure43

• For the second

43 The kernel reserves the ESI register for storing the stack boundary. The
register can still be used for temporary computations, as the compiler
automatically saves and restores the register to and from the stack.

143

case, checks can be used to dynamically extend the stack if
necessary.

5.4 Related Work

The presented runtime system facilitates concurrency with
a scalability and efficiency that has, to our knowledge, not
yet been achieved in existing systems; see the next chapter
for the experimental evaluations. Reasons for that is the
particularly light-weighted support of concurrency. Of
course, we also used many important ideas from existing
systems.

Kernel design. The design and implementation of the
kernel was primarily influenced by AOS [MuI02] and
Native Oberon [WG89]. The code for device drivers was
thereby adopted from AOS. However, the kernel offers
many new technical features, such as the (1) the light­
weighted processes with fine-granular stacks, (2) the
software-based preemption for low-cost context switches,
(3) both shared and exclusive locks for monitor-like
resources, (4) a sophisticated process scheduler, (5) a uni­
form heap model with explicit allocations and deallocations
(6), support of the complete 4GB main memory space and
(7), it does not institutionalise garbage collection and (8),
does not use virtual memory management. The micro
kernel has a smaller size than AOS (40% smaller consid­
ering only the kernel) and is organised in only five small
and meaningful modules.

Fine-granular stacks. The idea of representing a stack
as a dynamic list of memory blocks is already known from
existing systems [VC+03, HL+05]. In some of these
systems, the stack size can however not be arbitrarily small
but has to be at least of a page size (4KB) [Singularity].
Other works report on stack sharing, where process stacks
are saved to extra memory on context switches [WD94]. A
different known approach is to divide the stack into sub­
parts that are used by other threads [MSB05]. In our

144

language and system, the stack sizes of processes can be
adequately determined by the compiler, such that dynamic
stack extensions only occur for relatively seldom system
calls.

Communication support. Attempts have been made
towards static checking of the communication protocol
[RR02]. However, such an analysis typically involves
model checking, which is impractical for general programs
because of the highly exponential complexity44 and conser­
vative results. As the communication protocol in fact
describes dynamic interactions of an execution process, we
find it appropriate to also check the protocol dynamically.

Similar to our runtime system, the Singularity as
[HL+05] incorporates a communication-oriented program­
ming model [FA+06]. The kernel, drivers and applications
are designed as separate object spaces that have to be
isolated and can only interact by message exchange or via
shared objects in a special exchange heap. Static compiler
analysis thereby has to verify that no pointers illegally
cross object spaces and that only one process may access
the same object at the same time in the exchange heap.
Where analysis is not possible (due to costs or accuracy),
the isolation of the object spaces has to be trusted in the
Singularity OS. In our approach, all normal application
components ought to be programmed in the component
language, such that encapsulation of the components can be
inherently guaranteed.

Virtual memory. At present, most popular operating
systems (like Windows and Linux) still rely on virtual
memory management for process isolation. In more
modern operation systems, like AOS [MuI02] and
Singularity [HL+05], processes however do no longer need
to be isolated by separated virtual address spaces. As these

44 In general, the computational complexity is exponential to the state
space, defined as all possible combinations of data values in variables and
the execution branches in the program code.

145

systems are programmed in memory-safe languages
(except small parts of the kernel and driver code), all pro­
grams can safely run in the same virtual address space.
However, unlike our kernel, AOS and Singularity OS
utilise virtual memory management for the purpose of NIL
checks.

Heap management. Whereas our new programming
model permits safe heap management with hierarchically
defined deallocations, other systems depend on automatic
garbage collection in order to be memory-safe. To reduce
the disruption times of garbage collection, rather compli­
cated and expensive real-time collectors [Baker78, AEL88,
Baker92, N093, CBOO, BCR03] exist. Region models
[BSB+03] can be used to explicitly allocate objects in hier­
archical object spaces (cf. Section 2.1.5.2). However, the
use of regions is rather complicated and only optional, such
that most objects are still easier allocated in a global heap,
which has to be garbage-collected unless memory safety is
sacrificed. The Singularity OS [HL+05] thereby takes a
particularly interesting approach. As a result of the concept
of isolated object-spaces, each space can be managed by its
individual runtime system. Therefore, garbage collection
becomes customizable at the granularity of the object
spaces, meaning that the collection of one object space
does no longer influence the management of others.
Conceptually, our new component model also supports
such customised runtime systems on the same platform,
since terminal components can be implemented in their
own programming language and could be supported by
their individual runtime systems. However, we rather
believe that it is time to use more structured programming
languages with a clearly defined and closed lifecycle for
components (or objects), such that the automatic garbage
collection can be inherently abandoned.

146

Chapter 6

Technical Advances

Building a customised runtime system for a specific pro­
gramming model has already often proved to result in a
much more efficient solution than just using a standard
system. This is particularly true for a programming lan­
guage like ours, where the concepts remarkably deviate
from the existing mainstream and are only insufficiently
supported on conventional systems. With the new runtime
system, a runtime infrastructure has been created for our
component language that directly addresses the high needs
of concurrency. This chapter summarises the main techni­
cal advances that have been made.

Many of the technical results have to be confirmed by
means of experimental evaluations. Of course, a compari­
son with conventional systems is quite difficult, as standard
benchmark suites only focus on conventional languages
and do not agree with our substantially different program­
ming paradigm. In particular, our focus is clearly on the
support of concurrency, whilst standard benchmarks
primarily engage sequential programming. Therefore, we
assembled an own test suite, consisting of the following
concurrent programs.

1. City. A city simulation with N houses, each featur­
.ing an internal process that consumes K units of
electricity from a power plant and Kunits of water
from a river. The power plant concurrently

147

produces electricity from water and is able to store
up to C units of electrical energy in reserve.

2. ProducerConsumer. A producer-consumer sce­
nario with N producers and M consumers, each ex­
changing K messages over a common bounded
buffer with capacity C.

3. Eratosthenes. The computation of N prime
numbers by the Sieve of Eratosthenes. The algo­
rithm uses a pipeline of concurrent sieves, each
filtering out multiples of a certain prime number.

4. News. A news-broadcast simulation with N
customers and M reporters interacting with a
common broadcasting agency. Each reporter
publishes K different news messages, which are
read in parallel by all customers.

5. Library. A scenario with N customers and M
libraries, each storing K books. A customer uses
all libraries as follows: first, they list through the
entire book catalogue, then try to borrow a
specific book and if available, read it and eventu­
ally return the book to the library.

6. TokenRing. A simulation of N players in a circle
passing a token K times around.

7. Mandelbrot. A parallel computation of the
Mandelbrot fractal, by splitting the plane into N
parts. The plane consists of C points, while the
number of iterations is bound by K.

The test programs can be parameterised in the number of
components (N, M, K or C), allowing us to configure the
scalability of the test case. The test series was implemented
in our component language and in an analogous form in
object-oriented languages C#, Java, and Active Oberon.
Naturally, the versions for the different languages are
modelled as similarly as possible, using threads in place of
the intrinsic component processes. We implemented the
object-oriented programs in two different ways: (1) by
using communication-based interactions and (2) using

148

classical methods for object interactions. Evidently, the test
programs of the latter implementation involve a fewer
number of threads than in our language, which associates a
separate service process for each communication. To
realise the communication-based versions for C# and Java,
we used the specific language dialects Active C# [GG04]
and JCSP [Welch04], respectively. Alike our language,
Active C# also runs a separate server-side process for each
communication, while an object in JCSP serves all its
communications by a single object-intrinsic process. All
program sources are available, as described in Appendix D.

As runtime platforms, C# programs were executed with
.NET CLR45 under Windows46

, the Java version was tested
with JVM47 under Windows and, the Active Oberon pro­
gram ran under ADS. Three different test machines served
for the evaluation of the concurrency scalability:

1. Server computer. PC with 6 Intel Pentium
700MHz Xeon processors and with 4GB main
memory.

2. Desktop computer. PC with 2 logical (hyper­
threading) Intel Pentium 4, 2.4 GHz processors
and with 1 GB main memory.

3. Notebook computer. PC with 1 Intel Pentium
Mobile, 2.4GHz processor and with 256MB main
memory.

45 .NET Framework version 1.1
46 Windows XP Professional version 2002 for the desktop and notebook
computer. On the server computer, Windows Server 2003 R2 Enterprise
Edition was used to support all six processors.
47 J2SE version 1.5.0

149

6.1 Degree of Concurrency

Our component runtime system was primarily designed to
support a particularly high number of processes that is
clearly beyond the capabilities of existing systems. In fact,
this goal has been achieved, as we can show by measuring
the maximum supported number of processes on our run­
time system and on other systems. For this purpose, we
limited ourselves to test programs that allow an increasing
number of processes with a proportional growing execution
performance. Due to the dissimilarities of the programming
models, the test programs also need different configura­
tions in the different languages to reach the same number
of processes.

Tables 6-1 to 6-3 summarise the maximum number of
processes for the three machines. With regard to the
number of processes, our system outperforms traditional
systems by an order of two to three magnitudes. The com­
ponent system indeed permits millions of processes, where
the number of processes scales linearly with the available
size of physical main memory. As the test programs em­
ploy processes and components with different granularities,
the degree of concurrency varies among the different test
programs. For instance, the City program only requires
rather simple interactions with a small amount of memory
per component, whereas the TokenRing program occupies
somewhat more memory space for interface connections.
The evaluation clearly shows that classical systems only
allow a very small number of threads. This deficiency can
be traced back to the heavy-weighted stack design in those
systems, as well as in their high memory demands for pre­
emption backups. For C# and AOS, the degree of concur­
rency is even artificially limited by a constant on all
machines, regardless of the available memory space.

150

Program Component CN ActiveCN Java JCSP ADS
System

City 5010,000 1896 1,894 9,999 9,999 15,700
Ubrary 3,060,000 1,896 1,892 9,999 9,999 15,700
TokenRinq 4,120,000 1,896 1,896 9,999 9,999 15,700

Table 6-1. Maximum number of processes,
server machine (4GB main memory)

Program Component CN Active CN Java JCSP ADS
System

City 1 300000 1 956 1954 7,126 7126 15700
Ubrary 810,000 1,958 1,947 7,126 7,126 15,700
TokenRino 1,090,000 1,956 1,954 7,126 7,126 15,700

Table 6~2. Maximum number of processes,
desktop machine (lGB main memory)

Program Component CN Active CN Java JCSP ADS
System

City 321,000 1,954 1,954 7,233 7,233 15,700
Library 200,000 1,954 1,947 7,233 7,233 15,700
TokenRino 272,000 1,954 1,954 7,233 7,233 15,700

Table 6-3. Maximum number of processes,
notebook machine (256MB main memory)

Notably, the supported number of processes on our system
is even significantly higher than on other systems, which
also implement dynamic stack management. Such systems
only support about 100,000 threads [VC+03]. A recent
extension of AOS [Keller06] permits more threads but only
if the threads (active objects) do not invoke procedures or
methods and do not interact by monitor waiting. Clearly,
this is impractical as the threads can no longer perform any
non-trivial tasks. Our system does not impose such restric­
tions, as the dynamic stack management is supported for
every process. Hence, the processes within components can
always interact by message communication and can invoke
component-internal procedures.

151

6.2 Execution Performance

The new runtime system also surpasses conventional
systems with regard to execution performance of concur­
rent programs. To demonstrate this, we have measured the
execution times of the test programs with specific configu­
rations. Tables 6-4 to 6-6 denote the average runtimes in
seconds for ten subsequent executions of each test example.
All values are rounded to three significant figures and the
best result for each test case is highlighted. For each meas­
urement, the last column of the table denotes the speedup
of our component system compared to the fastest other
system. According to these measurements, the component
system outperforms the other communication-based pro­
grams of Active C# and JCSP with a faster execution, by a
median speedup factor between 11 and 15. In general, the
component-oriented programs also run significantly faster
than the analogous method-based programs. The average
speedup of our runtime system is between 18 and 40,
compared to the fastest other system. The median of the
speedup to the best other system is 2.6 for the server, 2.0
for the desktop and 1.9 for the notebook computer.
Naturally, this performance advantage is mainly due to the
underlying concurrency model, which offers low-cost
context switches, fast software-controlled preemption and
shared monitor locks. Only for some simple programs with
few concurrent processes do some method-based versions
run faster on certain computer machines. This is however
only the case because our language uses a higher number of
processes for the same programs, i.e. extra service
processes are involved for the client-individual communi­
cations. Therefore, the ProducerConsumer program (with
N=M=l) requires four processes in our language and only
two threads (or active objects) in the method-based lan­
guages. Moreover, the component language has not been
particularly optimised for sequential or mathematical pro­
gramming (such as for the Mandelbrot program) but rather
concentrates on high-level concepts, such as dynamic

152

collections, interface connections or message communIca­
tion.

Program Componen C# Active C# Java JCSP AO::; speedup
Sysfe of the new

system
City 0656 - (out of 437 15.0 4.09 2.73
(N~1000, K~lO. memory)
C~100)

City - (out of - (out of - (out of - (out of 629 225
(N~1O.000, K~l 0, memory) memory) memory) memory)
C~1001

Produce rConsu mer 7.•-(intemal 33.0 125 27.9 0.55
(N"M=1,C=10, deadlock)
K~1.0oo,000)
ProducerConsumer

liiiii:iiiiii'i'i~~'~ 18 8 ,(internal 134 258 59.7 1.18
(N~M~2 C~10 deadlock)
K~l ,000',000)'
ProducerConsurner I>i ..an 181 - (internal 372 641 153 3.83
(N~M~5,C~10, I>i>' deadlock)
K=1,000,OOO)
Fmtosthcncs···•·•· •.. 1. '7 6.76 10.4 4.63 17.5 5.83 2.62
(N"10.0oo) ••............
Eratosthenes

li1 ~.5 - (out of - (out of (out of - (out of 353 237
(N~100,000) memory) memory) memory) memory)
News 3.49 - (out of 3.88 8,68 3,73 1.76
(~WOO,McW _ memory)
K~10) >.
News - (out of - (out of - (out of - (out of 432 1.81
(N=10,OOO, M=10, memory) memory) memory) memory)
K~lO)

Library 139 0.741 - (out of 1.47 12.5 0.585 0.42
(N=1000, M~10, memory)
klO)
Library - (out of ,(out of • (out of - (out of 45,7 3.24
(N.l 0,000, M.l 0, >i.•..•......

memory) memory) memory) memory)
Kl0)

Tokenl<lng Ilii~' 21.8 83.5 21.9 32.0 17.7 8.51
(N~1000, K~1000)

lokenRing

Ili:iii>~0'~
211 941 207 314 176 8.50

(N=1000,
K=10.oo0)
Tokcnr-~ing

li>~~:~
- (out of - (out of - (out of - (out of 221 5.99

(N~10,00O, memory) memory) memory) memory)
K1000)
Mandelbrot 0.875 0.425 0.486 0.391 0.434 .600 0.45
(N~tOO, K~5.000,

C"3,2oo)

Table 6-4. Execution times in seconds, server machine
(6 processors, 700MHz each)

Remarks:

• The reason for programs running out of memory IS that they do
not support the required numher of threads.

• Active C# has an internal error in its runtime system, which
causes the ProdueerConsumer program to gct stuck after ahout
40,000 exchanged elements.

153

Program C# ActiveC# Java JCSP AOS speedup
oft/Jenew

system
City '--::-(ouYoi ~--T95:0

--~,,~~

559.0 10.0 2.4 20.5
(N-l000, K_10, memory)
C=100)
City - (out of - (out of - (out of - (out of 423,0 353
(N~10,000, K_1O, memory) memory) memory) memory)
C~100)

ProducerConsumer " (intemal 17.1 60.7 5.25 0.85
(N=M~1,C=10, deadlock)
K=1,000,000
ProducerConsumer - (internal 51.4 1210 10.7 128
(N~M~2,C~10, deadlock)
K~l ,000,000
Prod~JGerConsu mer 127.0 - (internal 140.0 298,0 26,9 1.46
(N_M_S,C_IO, deadiock)
K~l ,000,000)

•••••_._~____._~".,.~". M

Eratosthenes 8.23 5.69 6.04 20.9 .---.2:34 -------·:2·:(39
(N=IO,OOO)
Eratosthenes - (out of - (Ollt of - (out of - (out of 145 1.96
(N=100,000) memory) memory) memory) memory)
News 3.36 • (out of 2.00 418 0635 1.01
(N_1000, M_lO, memory)
K=IO)

"'Nf;WS - (oul of - (out of - (out of - (out of 0.41
(N~IO,OOO. M~10, memory) memory) memory) memory)
K=10)
Library .545 - (out of 0.572 5.65 0.78
(N~ 1000, M_I 0, memory)
K=10)
lTbrary - (out of - (out of - (out of - (out of -'4:89
(N_10,000, M=10, memory) memory) memory) memory)
K=10) ._--
TokenRing 10.2 39.4 11.0 14.4 3.36 265
(N=1000, K~1000)
TokenRing 973 4300 108.0 141,0 33,4 2,57
(N=1000,
K~10,000)

T,;i<,;;;nli,g' - (Ol1t of - (out of - (out of - (out of 33.7 2.65
(N=1O.000, memory) memory) memory) memory)
K~l()OO)

M~mdelbrot 0,467 0.391 1.50 0.34
(N~100, K"-5,OOO,
C=3,2oo)

Table 6-5. Execution times in seconds,
desktop machine (2 logical processors, 2.4GHz)

154

Program C# ActiveC# Java JCSP ADS speedup
ottlJenew

system
City "(out of

""~_~"" ..~~~w.~
--"~~'2.80 28.565,6 20,2 6,47

(N~1000, K~10, memory)
C=100)
City - (out 01 - (out 01 '- (out 01 - (out o(542 543
(N~lO,Ooo, klO, memory) memory) memory) memory)
C~100)

ProducerConsumer 2.59 48.8 " (internal 3.28 090
(N~M~l,C~10, deadlock)
K=l,Ooo,ooO)
PrOdL)CerCorl,SlJmer 7,16 96,3 ' (internal 7.43 065
(N"M~2,C"10, deadloek)
K"l,ooo,ooO
ProdLJcerConsumcr 14.9 224 - (internal 558 081
(N"M=5,C=10, deadlock)
bl,Ooo.ooO)
Lratosthenes 0:504 35.9 5.55 8,43 4.13
N=10,OOO)

Eratosthenes 60.7 - (out of • (out of - (out of 255
(N=100,OOO) memory) memory) memory)
News 0,641 0.921 - (out of 1.73 0,75
(N~1000, M~10, memory)
K~tO)

News-~"' 21.5 - (out of -(outol - (Ollt 01 - (out of 0,23
(N~10,000, M~10, memory) memory) memory) memory)
K~lO)

Library 0.524 0,597 - (out of 0,434 0,27
(N~1000, M~lO, memory)
!5.=!.QL__
Library - (out of - (Ollt of - (out of - (out of 10,6
(N=10,Ooo, M=10, memory) memory) memory) memory)
K=10
lokenRing 58.7 74,1 8,74 13,0 2,62 2,11
(N~ 1000, K~1000)
lokenRing 605 763 90.5 127 26.5 193
(N~1000,

K~10,ooO)

Tol<",i1';[;i9--- - (out of -(olltof - (Ollt of -(outof 26.7 2,01
(N~10,OOO, memory) memory) memory) memory)
K~1000)
Mandeibrot 1.78 0,623 0,623 0,557 ,900 0.30
(N~100, K~5,000,

C=3,?00)

Table 6-6. Execution times in seconds,
notebook machine (I processor,2.4GHz)

Remark:

• .ICSP seems to have a performance problem for the ProducerCon-
sumer program on the notebook machine.

Of course, the runtime system offers a higher performance
with an increasing number of processors. For instance, the
Mandelbrot problem takes 5.40 seconds with a single
processor on the scrvcr computer and has a runtime of
0.875 seconds in the case of six processors, resulting in a
speedup of factor 6. Howcver, the remaining programs are
not faster (and also not substantially slower) with more
processors. This is because they involve frequent synchro­
nisation due to the communications and monitor protection,

155

which is extremely slow on today's multi-processors com­
puter machine.

6.3 Absence of Garbage Collection

A particular advantage of our new runtime system is the
absence of an automatic garbage collector, to ensure
memory safety in our programming language. Due to the
hierarchical lifetime dependencies, not even reference
counting has to be engaged. In fact, inner components can
be automatically deleted when the surrounding component
is disposed of. This is safe in our language, because inner
components are always completely encapsulated and can
not be directly accessed from outside. A single component
may only be deleted explicitly in the program, if no
required interfaces "U'e connected to the corresponding
component (cf. end of Section 3.4).

Without a garbage collector, our runtime system does
not only have a substantially simpler implementation, but
also prohibits unexpected system disruptions. Unlike ()ther
runtime systems for object-oriented or pointer-based lan­
guages, our system does no longer have to be stopped by a
global garbage collector. To illustrate the difference, we
have performed a measurement series of 500 subsequent
executions of the TokenRing program (N=K=lOO). While
AOS (Figure 6-1) suffers from continuous peaks as a result
of the garbage collector disruptions, our runtime system
(Figure 6-2) exhibits a nearly constant execution time
among all iterations. Moreover, AOS stops with a trap after
about 900 iterations, as the garbage collector is sometimes
not fast enough to reclaim the stacks of the terminated
processes. This is because the process stacks have to be
cleaned up by finalisers, which do not have any guaranteed
execution time in the system.

The only time t1uctuations that occur in the component
system are due to the non-predicable process synchronisa­
tion and caching effects. In fact, such synchronisations

156

happen very frequently in our model and for the imple­
mentation of any lock construct, tlle machine only supports
very primitive atomic test-and-set instructions that do not
give any time guarantees. In other words, our runtime
system is not yet a real-time system because of the concur­
rency support of the hardware. However, the concept of
pointer-freedom in the language and the absence of garbage
collection in the system are already a substantial step in this
direction. Supposing that we had an appropriate machine
with real-time concurrency or that we would integrate the
concept of component struchlres in a sequential program­
ming model, the realisation of such a system would be
conceivable.

"157

ADS
runtime measurements (in ms)

60 119 178 237 296 355 414 473 532 591 650 709 768 827 886 945

neration

Figure 0-1. Series of runtime measurements with the
TokenRing program (N=K=:;IOO) under AOS

Component System

runtime measurements (in ms)

60

50

40

30

20

10

60 119 178 237 296 355 414 473 532 591 650 709 "/68 827 886 945

Iteration

............................_---_._---_._-_._-_._-------_----!

Figure 6-2. Series of runtime measurements with the
TokcnRing program (N=K= I(0) under the component system

158

Chapter 7

Case Study

Concepts and systems are best evaluated experimentally by
applying them to a real problem. For this purpose, we have
performed a case study with the new programming lan­
guage. As object-orientation was originally invented for
simulation programming [DN66] and our component
model should be more general than objects, we found it apt
to also situate the study in the field of simulation program­
ming. As a good example of a simulation problem, we
focused on traffic simulation. It allows us to apply our lan­
guage to a natural and practical problem and enables com­
parison to a canonical solution. In summary, the goals of
the traffic simulation study were to analyse the following
issues:

• Modelling
It should be determined whether and how our pro­
gramming language conveys a more natural
description of the simulation program. We also
investigate on the expressiveness of the pointer­
free language, in particular the hierarchical com­
position.

• Performance
The execution speed of our concurrent simulation
program should be compared to a classical

159

sequential discrete event simulation system, which
is developed in an ordinary object-oriented pro­
gramming language.

7.1 Project Overview

In this project, we developed a traffic simulation package
in our language. The package covers all features a traffic
simulation should have, such as a detailed simulation of car
movements on a network of roads, route planning, utility­
based decision of departure times, as well as learning
processes from traffic jams [Nagel05]. Thereby, we inten­
tionally modelled the simulation in the spirit of the new
programming language, without being influenced by the
implementation of traditional simulations. The result is
eventually compared to a traditional traffic simulation
package [Nage105, Part IT], developed in an ordinary pro­
gramming language (which is in this case C++). The two
simulations differ significantly in their program models: the
component-oriented simulation emphasises concurrent and
autonomously driving vehicles, whereas the classical tradi­
tional simulation schedules the movements of all vehicles
in a sequential and globally directed way. As a common
feature, both simulation packages support roads based on
cellular automata and on queues. It can be determined for
each simulation, which road implementation is used.

7.2 New Traffic Simulation

The traffic simulation package that we have developed in
the component language differs substantially from classical
traffic simulation models. More specifically, the com­
ponent-based simulation engages the following new
concepts:

• Autonomous cars. All vehicles constitute autono­
mous components that drive concurrently. There

160

is no explicit global instance that directs all car
movements on the road network.

• Virtual time. All vehicles run with a virtual time
that corresponds to the time of the simulated
world. The vehicles are exactly coordinated with
regard to a virtual time, such that vehicles
advance on the road in a time-synchronous way.

• Individual planning. The drivers of the vehicles
plan their trip and route individually by only
using their own experience of previous journeys.
No global knowledge by a central authority is
presumed for the cars.

• Car transports. Vehicle drivers can use car trans­
portation services offered on certain routes. For
this purpose, cars can be packed in a train or in a
ferry and can so be transported. This is modelled
in our language as a hierarchical composition,
where car components are indeed contained
within the transportation vehicle.

7.2.1 Virtual Time

For the purpose of simulation programming, the component
language features an inbuilt concept of virtual time that can
be used to directly represent the simulated time of the
natural world within the program. Therefore, each com­
ponent features an intrinsic discrete virtual time that is by
default independent of the other components. The use of
the virtual time is thereby defined as follows. All comput­
ing operations happen within zero virtual time, describing
instantaneous actions or reactions in the simulated world.
By use of the PASSIVATE-statement, a process may
declare that the virtual time proceeds by a certain amount
of time. The system automatically ensures that the execu­
tion after the PASSIVATE-statement only continues when
all other processes within the same component wait at least
for this virtual time.

161

PASSIVATE(duration) The process suspends until a certain virtual
time period has elapsed.

In addition, a process may also wait for an undefined
virtual time, as long as a certain condition is not satisfied.
This is done by using the AWAIT-statement, which sus­
pends the execution until a certain Boolean condition is
established for the first virtual time.

AWAIT(condition) The process waits until a certain condition is
fulfilled, now or in future of the virtual time.

It should be noted that with these semantics, the imple­
mentations of classical time-less components (which do not
execute any PASSIVATE-statements) remain unchanged.

A process can read the inbuilt variable TIME of a com­
ponent, to determine the current virtual time inside the
component.

TIME Read-only access to the current virtual time

As in nature, a component may contain immovable sub­
components, which have the same virtual time like the
container (no relativistic time dilatations due to different
speeds or accelerations). A component may identify such
sub-components by annotating the attribute SYNCHRO­
NOUS to the variable. The system then ensures that the
virtual time of the sub-components is exactly time-syn­
chronous to the outer instance.

VARIABLE x: T {SYNCHRONOUS}
Sub-component x has the same virtual time
like its surrounding component.

It is noteworthy that the SYNCHRONOUS attribute does
not influence the perception of the virtual time inside the
sub-component. This means that the implementation of a
component does not have to be prepared for being used in a
time-synchronous way. Therefore, the same component
template can be used to create both time-synchronous and
time-independent component instances.

162

7.2.2 Main Structure

The main structure of the simulation program is depicted in
Figure 7-1. The Car components concurrently interact with
the RoadNetwork component, which is made up by road
links. Each car features its personal planning instance, that
records the detailed travel times of the car and computes
the best route and departure times at the level of the locally
observed times. In order to determine a feasible route, the
planner component (and therefore also the Car) needs
information from the RoadMap interface.

RoadVehicle RoadVchicle

Figure 7-1. Main structure of the traffic simulation

7.2.3 Road Network

The RoadNetwork component contains a collection of link
components, which are dynamically constructed according
to an XMI. road network file (road links are therein
encoded with integer identifiers). In this simulation
package [NageI05J, road nodes do not contain any logic
and therefore, do not need to be represented as components.
The implementation of the Road interface directly performs
the transitions over road junctions. The concrete template
of the road links is deliberately left open, such that different
implementations of the road links can be used. It is

163

important that the sub-components of the road links are
synchronous with the virtual time of the road network
itself. This ensures that all road parts run with equally fast
virtual time, such that cars can drive from one road link to
another without virtual time differences. Otherwise, a car
could enter a road link at a time which already lies in the
virtual past of the link.

COMPONENT RoadNetwork OFFERS Road, RoadMap;
VARIABLE

link[id: INTEGER]: ANY(Link) {SYNCHRONOUS};
BEGIN

(* construct network *)
END RoadNetwork;

The Road interface allows cars to drive an arbitrary route
on the road. At each junction, a car has to decide which
way should be taken next. The carld parameter is only
needed here to allow global snapshots of the road network
for the user output.

INTERFACE Road;
IN Prepare(carld: INTEGER)
{

IN Start
{ IN Drive(linkld: INTEGER) OUT Departed OUT Arrived}
IN Stop

}
END Road;

The implementation of the Road regulates the driving
activities of the cars on the road network and the branching
at junctions. It is noteworthy, that a car only exits a link on
a junction, when it can enter the desired next link. During
the moments of waiting, virtual time may naturally elapse
(using the AWAIT-statement).

164

IMPLEMENTATION Road;
VARIABLE carld, from, to: INTEGER;
BEG IN {SHARED}

?Prepare(carld);
AWAIT(INPUT(ANY)); (* await any message *)
WHILE ?Start DO

?Start(time); from := NoLink;
AWAIT(INPUT(ANY));
WHILE ?Drive DO

?Drive(to);
Link(link[to])!Enter(carld) ;
AWAIT(INPUT(Link(link[to]), Entered));
Link(link[to])?Entered;
!Departed;
IF from # NoLink THEN Link(link[from])!Exit END;
AWAIT(INPUT(Link(link[to]), EndReached));
Link(link[to])?EndReached;
from := to;
!Arrived;
AWAIT(INPUT(ANY))

END;
IF from # NoLink THEN Link(link[from])!Exit END;
?Stop;
AWAIT(INPUT(ANY))

END
END Road;

Depending on the road topology and decisions of the cars,
the traffic simulation may run into "natural" deadlocks. For
example, it is conceivable that, given a circular road sub­
network, all links are fully congested and the exiting car of
each link tries to enter another jammed link in a circular
way, as illustrated in Figure 7-2. Similar to traditional
simulations, we resolve such a problem by means of a
timeout. If cars wait longer than a defined duration for
entrance to a certain road, the jam is unblocked by allowing
the cars to enter in spite of the congestion.

165

wants to link A
enter~OOXIXIXIXIXIXIX.

exiting car

link D

linkC
~OOXIXIXIXIXIXIX.,.J

link B

Figure 7-2. Deadlock situation: the exiting car of link D wants to enter
link A, while the exiting car of A tries to enter B and so on.

7.2.4 Road Links

The RoadLink component constitutes the smallest building
block of a road network, representing a single unidirec­
tional roadway. As already mentioned, our simulation
supports two implementations of road links, namely one
based on cellular automata and another based on queues.
The latter implementation is typically employed in practice
for large-scaled simulations, as it offers higher performance
[NageI05, Chapter 18] (but is less accurate for congestion
effects on the road link). The Link interface allows cars to
enter the link, if there is sufficient space, at the beginning of
the road. Subsequently, the car remains on the road until
the end is reached and the car has left the road.

INTERFACE Link;
IN Enter(carld: INTEGER) OUT Entered
OUT EndReached IN Exit

END Link;

7.2.5 Cellular Automata

One implementation of the road links models them as
cellular automata. For this purpose, the links are divided
into small cells, each able to contain at most one car. The
cars continuously adapt their speed to the free road space
ahead of their current location.

166

COMPONENT RoadLinkCA OFFERS Link;
VARIABLE

cell[position: INTEGER]: BOOLEAN;
exit: INTEGER;

IMPLEMENTATION Link;
VARIABLE carld, pos, speed, k: INTEGER;
BEGIN {EXCLUSIVE}

?Enter(carld);
AWAIT(cell[O] = NoCar);
cell[O] := carld;
!Entered;
pos := 0; speed := 0;
WHILE pos < exit DO

IF cell[pos + 1] # NoCar THEN
speed:= 0;
AWAIT(cell[pos + 1] = NoCar)

END;
IF speed < maxSpeed THEN INC(speed) END;
PASSIVATE(1); (* wait for one virtual second *)
k:= 1;
WHILE (pas + k < exit) AND (k < speed)

AND (cell[pos + k + 1] == NoCar) DO INC(k) END;
speed := k;
cell[pos + speed] := carld;
cell[pos] :== NaCar;
INC(pos, speed)

END;
!EndReached;
AWAIT(INPUT(Exit));
cell[exit] := NoCar;
?Exit

END Link;
END RaadLinkCA;

7.2.6 Queue-Based Links

The other implementation of the road links that is offered
by our simulation uses a queue. The cars that enter the cor­
responding road link are put into a queue and are removed
from the other side when they exit. With this implementa­
tion, a car can only exit after its front car has left the road.
However, a car must not exit earlier than a certain
minimum time which is required to drive over the clear
road with free speed. The road also has a maximum
capacity, limiting the number of cars that can be on the

167

road at the same time. Moreover, at most one car may enter
the road at the same virtual time.

COMPONENT RoadLinkQB OFFERS Link;
VARIABLE

freeTravelTime, maxCars, cars: INTEGER;
lastEntered, lastExited: INTEGER;
canEnter: BOOLEAN;

IMPLEMENTATION Link;
VARIABLE carld, current: INTEGER;
BEGIN {EXCLUSIVE}

?Enter(carld);
AWAIT(canEnter); canEnter:= FALSE;
INC(lastEntered); current := lastEntered;
INC(cars);
AWAIT(cars < maxCars);
!Entered;
PASSIVATE(1);
canEnter := TRUE;
PASSIVATE(freeTravelTime);
AWAIT(lastExited = current - 1);
!EndReached;
AWAIT(INPUT(Exit)) ;
lastExited := current; DEC(cars);
?Exit

END Link;
END RoadLinkQB;

7.2.7 Cars

A Car component encapsulates the more complex logic of
an individual vehicle driver. A separation between a
vehicle and driver component is here economised for the
sake of simplicity. Each car offers the RoadVehicie inter­
face that roughly defines the interest of an individual
driver, i.e. the destinations they want to head for during
their day-activities (as specified by the activities file). The
car driver plans the detailed route and the departure time on
its own.

INTERFACE VehicleActivitySetup;
IN Initialize(carld, startLinkld: INTEGER)
{ IN Destination(linkld, desiredArrivalTime: INTEGER) }
IN End

END VehicleActivitySetup;

168

Naturally, cars may be also instructed to drive according to
predefined route plan. In this case, the following interface
of the car is used:

INTERFACE VehiclePlanSetup;
IN Initialize(carld: INTEGER)
{

IN BeginRoute(startLinkld, endLinkld, departTime: INTEGER)
{ IN Link(linkld: INTEGER) } IN EndRoute

}
IN End

END VehiclePlanSetup;

After initialisation, the car can be started by the Vehicle
interface.

INTERFACE Vehicle;
{ IN Start OUT Ready IN Depart OUT Arrived}

END Vehicle;

A car only begins its journey after waiting for the right
virtual departure time of the current day. However, if the
car has arrived too late from a previous journey and the
desired departure for the next trip has already passed, it
starts immediately. The car trip continues as long as the car
has not yet arrived at its final destination. During the trip,
the car measures the departure and arrival time for each
road link.

COMPONENT Car
OFFERS Vehicle, VehicleActivitySetup, VehiclePlanSetup
REQUIRES Road, RoadMap;

VARIABLE
carld, nofDestinations: INTEGER;
bestDepartTime[destinationNo: INTEGER]: INTEGER;
routeLength[destinationNo: INTEGER]: INTEGER;
IinkOnRoute[destinationNo, position: INTEGER]: INTEGER;

IMPLEMENTATION Vehicle;
VARIABLE linkld, departTime, arrivalTime, i, k: INTEGER;
BEGIN {EXCLUSIVE}

RoadIPrepare(carld);
WHILE ?Start DO

169

?Start; PlanDay; !Ready; ?Depart;
FOR i := 1 TO nofDestinations DO

departTime := bestDepartTime[i];
IF departTime > TIME MOD Day THEN

PASSIVATE(departTime - TIME MOD Day)
END;
Road IStart;
FOR k := 1 TO routeLength[i] DO

linkid := linkOnRoute[i, k];
Road!Drive(linkld);
AWAIT(INPUT(Road, Departed));
Road?Departed; departTime := TIME MOD Day;
AWAIT(INPUT(Road, Arrived));
Road?Arrived; arrivalTime := TIME MOD Day;
RecordTravelTime(linkld, departTime, arrivalTime);

END;
Road!Stop

END;
PASSIVATE(Day - TIME MOD Day);

(* wait for end of the day *)
!Arrived;
AWAIT(INPUT(ANY))

END
END Vehicle;

(* ... *)
END Car;

7.2.8 Route Planning

In this simulation, cars do their individual trip and route
planning. For this purpose, each Car features a personal
TripPlanner component that integrates the logic for a short­
est path computation. The trip planner accepts feedback via
the PlanAdjustment interface, stating how long it previously
took to travel on a certain road. With this information, the
component adapts the route plans to the locally observed
congestion.

INTERFACE TripPlan;
IN Compute(startLinkld, endLinkld, desiredArrTime: INTEGER)
OUT Plan(bestDepartTime: INTEGER)
{ OUT LinkOnRoute(linkld: INTEGER; transport: BOOLEAN) }
OUT End

END TripPlan;

170

INTERFACE PlanAdjustment;
IN TraveITime(linkld, departTime, travelTime: INTEGER}

END PlanAdjustment;

COMPONENT TripPlanner
OFFERS TripPlan, PlanAdjustment
REQUIRES RoadMap;
(* ... *)

END TripPlanner;

With the trip planner, each car determines its own subjec­
tively optimal departure time, using a utility-based
approach. For this purpose, the trip planner also employs an
inner route planner component, which calculates the short­
est paths on the road network. In contrast to the classical
simulation, we do not try all possible departure times (in
the granularity of time frames), as this would take too long
if computed separately for each car. Instead, we use another
heuristic for determining a reasonable departure time: fIrst,
an arbitrary departure time is selected and the correspond­
ing expected arrival time is computed; then, the departure
time is adjusted considering whether the time difference
results in the car being too early or too late. This value
fInally serves as the departure time for the next iteration
step of this heuristic process.

bestUtility := MIN(REAL}; depTime := desArrTime;
FOR i := 1 TO PlanStepsPerRoute DO

RoutePlan(routePlanner}!CalcRoute(depLink, arrLink, depTime};
IF RoutePlan(routePlanner}?NoRoute THEN
RoutePlan(routePlanner}?NoRoute

ELSE
RoutePlan(routePlanner}?BestRoute(arrTime};
utility := CalculateUtility(depTime, arrTime, desArrTime};
IF utility> bestUtility THEN
bestDepartTime := depTime; bestUtility := utility;
RoutePlan(routePlanner}!GiveRoute; k := 0;
WHILE RoutePlan(routePlanner}?Link DO

INC(k}; RoutePlan(routePlanner}?Link(linkOnRoute[k]}
END;
routeLength := k;
RoutePlan(routePlanner}?EndOfRoute

ELSE
RoutePlan(routePlanner}!DiscardRoute

END;

171

INC(depTime, desArrTime - arrTime);
IF depTime < aTHEN depTime := aEND

END

7.2.9 Car Transports

Our simulation has been extended to also support car trans­
portation on defined links48

• For this purpose, cars can be
loaded into a transportation vehicle, which could be for
example a train or a ferry. As a result, the cars are trans­
ported as part of the train or ferry. The transportation can
be directly modelled by using the hierarchical composition
offered by the language. The transportation process works
as illustrated in Figure 7-3, involving the following steps:

1. A car has to signal its interest in transportation by a
sending the PutOnTransport message via its
required interface VehicleEvents. The message is
handled by the car-individual service process of the
implementation block that runs outside the car.

VehicleEvents!PutOnTransport(carld, linkld)

2. The service process initiates the car to become
inactive and disconnects its interfaces. This is
automatically done when the car component should
be migrated to another component. The car is
designed in such a way that it can stop its intrinsic
process when it should be transported.

3. The car component is moved by the outer service
process into the transportation vehicle. More spe­
cifically, it is transmitted as part of the Enter
message to the offered CarTransport interface of
the transportation vehicle. As discussed in Section
3.5, components are removed from the sender and
plugged in the receiver if they are sent as a
parameter of a message.

48 The links with a car transport service have to be denoted with the
attribute transport="true" in the XML road network file.

172

IMPLEMENTATION VehicleEvents;
VARIABLE carld, linkld: INTEGER;
BEGIN {EXCLUSIVE}
IF ?PutOnTransport THEN
?PutOnTransport(carld, linkld);
CarTransport(transport[linkld])! Enter(carld, car[carld])
(* car[carld] is inactivated, disconn. and transmitted *)

END
(* ... *)

END VehicleEvents;

4. The car is placed inside the train or ferry, by the
service process which runs inside the Transportation­

Vehicle and receives the message containing the car
component.

COMPONENT TransportationVehicle
OFFERS CarTransport (* ... *);

VARIABLE car[carld: INTEGER]: Car;

IMPLEMENTATION CarTransport;
VARIABLE carld: INTEGER; x: Car;
BEGIN {EXCLUSIVE}

IF ?Enter THEN
?Enter(carld, x); (* ... *) MOVE(x, car[carld])

END
END CarTransport;
(* ... *)

END TransportationVehicle;

5. The car can now be transported as part of the trans­
portation vehicle.

6. When the transportation vehicle arrives, it initiates
the unloading of the cars via its required Vehicle­
Events interface.

VehicleEvents! RemoveFromTransport(1 inkid)

173

7. This is handled by the service process outside the
TransportationVehicle component and moves the
cars out of the transportation vehicle.

1M PLEMENTATION VehicleEvents;
VARIABLE carld, linkld: INTEGER; x: Car;
BEGIN {EXCLUSIVE}

(* .. *)
IF ?RemoveFromTransport THEN

?RemoveFromTransport(linkld);
CarTransport(transport[linkld])!Exit;
WHILE CarTransport(transport[linkld])?ExitingCar DO

CarTransport(transport[linkld])?ExitingCar(carld, x);
MOVE(x, car[carld]);
(* connect and reactivate cars *)

END
CarTransport(transport[linkld])?NoMoreCars

ELSE (* ... *)
END

END VehicleEvents;

8. The interfaces of the car are reconnected and the
Car components are reactivated for autonomous
driving on the road.

CONNECT(Road(car[carld)), road);
CONNECT(RoadMap(car[carld]), road);
CONNECT(VehicleEvents(car[carld)), VehicleEvents);
Veh icle(car[carld])! Depart;

174

1-

0

1
! f

signal arriv~/f--6j
Vehicle~

Events

3.

transmit caro
component

5.

transport cars

i-O-----servtcei 2.

i process i inactivate and 0
send '~.------r------ disconnect ../

me~sage!~O ...
•.••• •··••.•·..G.••. ··~r.·.·•••.•• ·.·.• Vehicle~ li.....~...·.·.~.·..·i.•.•••.>.•·•..·.·.·tc•..•.. Events'"

4.

1.

6.
disembark 0 7'0 connect and

\" reactivate

~

~

8.

Figure 7-3. Car transportation process

The implementation of the transport.at.ion system is straight­
forward. Cars can be loadcd up to a defined capacity in the
transportation vehicle. Subsequently, the t.ransport.at.ion
system depart.s and is under way for a defined virtual time.
At. the arrival, cars have t.o be unloaded from the t.rans­
port.at.ion vehicle.

INTERFACE CarTransport;
IN Enter(carld: INTEGER; car: Car)

I
IN Exit
{OUT ExitingCar(carld: INTEGER; car: Car) }
OUT NoMoreCars

END CarTransport;

175

COMPONENT CarTransportSystem
OFFERS CarTransport, TransportConfig
REQUIRES VehicleEvents;

CONSTANT Departing =1; UnderWay =2; Arrived =3;
VARIABLE

linkld, capacity, travelTime, state, nofCars: INTEGER;
car[carld: INTEGER]: Car;

1MPLEMENTATION CarTransport;
VARIABLE carld: INTEGER; x: Car;
BEG IN {EXCLUSIVE}

IF ?Enter THEN
?Enter(carld, x);
AWAIT((state = Departing) AND (nofCars < capacity));
INC(nofCars); MOVE(x, car[carld])

ELSE
?Exit;
AWAIT(state = Arrived);
FOREACH carld OF car DO

!ExitingCar(carld, car[carld]); DEC(nofCars)
END;
!NoMoreCars

END
END CarTransport;

BEGIN state := 0
ACTIVITY {EXCLUSIVE}
AWAIT(state = Departing);
REPEAT
AWAIT((nofCars> 0) OR TERMINATEDO);
IF nofCars > 0 THEN

state := UnderWay;
PASSIVATE(traveITime); state := Arrived;
VehicleEvents! RemoveFromTransport(linkld);
AWAIT(nofCars = 0); state := Departing

END
UNTIL TERMINATEDO

END CarTransportSystem;

7.2.10 Entire Simulation

The entire traffic simulation package forms one com­
ponent, which contains one RoadNetwork component, as
well as a dynamic number of Car components, as specified
by the configuration files. The cars all have to drive time­
synchronously on the road network. The TrafficSimulation

176

component also requires the Filesystem and SystemTime
interface for reading and writing files, and for measuring
the runtime performance of the simulation.

COMPONENT TrafficSimulation
REQU IRES Filesystem, SystemTime;

VARIABLE
car[id: INTEGER]: Car {SYNCHRONOUS};
road: RoadNetwork {SYNCHRONOUS};
networkReader: RoadNetworkReader;

BEGIN
NEW(networkReader);
CONNECT(FileSystem(networkReader), FileSystem);
NEW(road); CONNECT(RoadData(road), networkReader);
BuildTransports; (* create transportation systems *)
CreateCars; (* read configuration file to create the cars *)
FOR iteration := 1 TO Noflterations DO
WRITE("Start planning "); WRITELlNE;
FOREACH carld OF car DO
RoadVehicle(car[carld])!Start

END;
FOREACH carld OF car DO

RoadVehicle(car[carld])?Ready
END;
WRITE("Planning end"); WRITELlNE;
WRITE("Start simulation"); WRITELlNE;
FOREACH carld OF car DO

RoadVehicle(car[carld])! Depart
END;
FOREACH carld OF car DO
AWAIT(INPUT(RoadVehicle(car[carld]), Arrived);
RoadVehicle(car[carld])?Arrived

END;
WRITE("Simulation end"); WRITELINE

END
END TrafficSimulation;

7.3 Classical Traffic Simulation

To have a reference for comparison, we also developed a
classical traffic simulation package. For this purpose, we
followed the instructions of [NageI05, Part II] and used
C++ as the programming language. The simulation is

177

generally structured as follows: the road network consists
of a set of links and nodes, where links represent unidirec­
tional roadways and nodes the junctions between a set of
links. Again, it can be chosen whether links are imple­
mented as cellular automata or as queues. In both cases, the
road links store direct pointers to the cars that drive on
them. A node does not have any specific logic but just
maintains pointers to links. The simulation model is
sequential, Le. a global program loop iterates over the
virtual time scale and computes the road state from one
time step to the next one. Each road link maintains a
separate event list for the cars that are scheduled to depart
at a defined time from the corresponding link as well as for
the cars which wait for free entry space on the link.
According to the model of [NageI05, Part II], the move­
ment of all cars is directed by a global program loop that
traverses the links at each time step and performs the nec­
essary transitions over the road junctions.

Apart from the core simulation, the package also con­
sists of other units: a route planner, which computes the
shortest paths by road for the defined trips of all vehicles;
as well as a trip planner, which determines the adequate
trips and departure times for all vehicles, given their
desired day activities. All three units run separately from
each other and are iteratively executed.

In this process, the result of the traffic simulation
serves as feedback for the two planner units, exchanging
data via files: (1) the core simulation reads pre-computed
road network configuration and route plans from files and
in turn, writes the departure and arrival times of each
vehicle to an events file; (2) the trip planner then reads the
desired day-activities and the events from a file and gener­
ates a trip file; and finally, (3) the route planner internalises
both the trips and the events, in order to calculate the route
plans, which are again imported by the core simulation
unit.

178

7.4 Evaluation

7.4.1 Modelling

First of all, we have demonstrated that the language offers a
sufficient expressiveness for solving a non-trivial problem
in a smooth and elegant way. In particular, the pointers can
be seamlessly replaced by the relations of the components,
without loss of any useful flexibility. In particular, the
composition scenario of car transport~ can be directly rep­
resented by the hierarchical compositions of the com­
ponents, whereas a classical programming language does
not allow such hierarchical structures with pointers.

We found that the component language also enables a
more natural description of the car behaviour and traffic
effects. The driving scenario of each car is individually
described with regard to its own virtual time, reflecting the
time of the simulated reality. In contrast to a classical
traffic simulation, all cars drive concurrently without a
global program loop that explicitly directs the movements
of all cars. As the virtual times of the car activities are
automatically kept synchronous by the system, we can
abandon the intertwined description of all effects for the
same virtual time, as it is required in sequential simula­
tions.

Compared to the classical simulation, different techni­
cal artefacts have been eliminated in our model: no explicit
park and wait queues are needed and no complicated global
update-orders of the road network have to be considered
(such as whether one has to move cars first on the links and
then over the junctions or vice versa, selection policies on
links to guarantee fairness in the sequential update logic).
In addition, our implementation performs individual trip
planning for each car with only local knowledge. Travel
times are individually remembered by the affected car and
do not need to be collected in a global events list (generally
stored to a file). This probably conforms better to the real

179

world and also avoids expensive global collection and
analysis of all car data in each simulation step.

The general component abstractions also add more
flexibility in the deployment of the simulation on multi­
processor and possibly also on distributed systems. Though
the latter is beyond the scope of this work, the concepts of
communication and the absence of pointers and garbage
collection would be suited for an automatic program distri­
bution on different machines. The communication-based
interactions inherently fit with the network model and
complicated distributed garbage collection is superfluous.
fistead, each component has a clearly defined scope within
the language, such that without change of the program, the
components and their inner processes could be auto­
matically distributed and migrated by the runtime systems
between different processors and machines for optimisa­
tions (with regard to scalability or performance) behind the
scenes.

7.4.2 Performance

We measured the speed of our new simulation and the
classical C++ solution. Though the designs and the
paradigms of both simulations are fundamentally different,
we tried to evaluate the performance in a way that is as
objective as possible. For this reason, we measured the core
simulation phase, without planning and without file input
and output. The queue-based implementation of the road
links was used in the simulations. In a first step, the per­
formance of the simulations was measured on a computer
with a single fitel Xeon 700MHz processor and 4GB main
memory. Then, the measurement') were performed with six
processors of this type. The C++ simulation was run under
Windows Server 2003 R2 Enterprise Edition and was com­
piled with highest speed optimisation. As input data, we
simulated the traffic flow of Greater Zurich, with a road

180

network of more than 28,000 links49 and 260,000 cars with
detailed routes50 that were collected by the Swiss
authorities [UVEK]. The input data was available in XML
files with a size of more than 230MB. To evaluate the per­
formance, we also measured the simulation with different
numbers of the cars, taking a corresponding subset of the
traffic data.

Table 7-1 summarise the average execution times in
minutes of the core simulation phase using a single
processor. All the times are in minutes and are rounded to
two significant figures. As can be seen, our version offers a
substantially higher performance than the classical imple­
mentation in C++. For example, our simulation is faster by
a factor of 3.1 for 260,000 cars. In the case of fewer cars,
the performance difference is significantly larger. The
measurement series indicate that the component-based
simulation scales linearly with the number of cars. In fact,
the runtime also depends on the congestion of the road.
Conversely, the runtime of the classical simulation depends
to a large extent on the length of the road and on the differ­
ence between the maximum arrival time and the minimum
departure time. This is because of the explicit scheduler
loop in the classical simulation program, which iterates
over the virtual time and all road links.

In addition, we also compared our simulation to an
analogous concurrent implementation, written in C#. We
deliberately made an effort on designing the simulation
similar to our version, such that cars for example also
feature their own threads for driving logic. However to
retain the spirit of classical object-orientation, the C#

49 Data source: Digitales Strassennetz mit samtlichen Streckenangeboten
und Widerstandsfunktionen, Bundesamt flir Raumentwicklung, Bern, July,
2007.

50 Data source: Verkehrsangebot, Bundesamt fUr Raumentwicklung, Bern,
July, 2007.

181

version engages method calls instead of communication
and also uses no separate service processes like in the com­
ponent-oriented program. The virtual time has to be
modelled explicitly in the C# program, synchronised by a
global virtual timer object. Clearly, the measurements show
that the threads of the C# language are not designed to
support fine-granular concurrency in an efficient way. The
C# simulation with 1,000 cars is already at the limit of the
system, requiring a runtime that is by two to three orders of
magnitudes longer than our component-based simulation.

Zurich traffic Component C++ C#
simulation system (sequential) (concurrent)
(in minutes)
1 000 cars 0.03 140 19
10,000 cars 05 140 out of memory
100,000 cars 12 190 out of memory

260,000 cars 67 210 out of memory

Table 7-1. Zurich simulation, runtimes in minutes, one processor

In a further step, the simulation of the Zurich network
was executed with activation of six Intel 700MHz Xeon
processors on the same machine. According to the results
given in Table 7-2, this unfortunately does not result in
faster runtimes. The reason for this is that the simulation
mostly consists of synchronisations with regard to the
virtual time and the driving behaviour, while cars only per­
form very little independent logic (less than 1%). As the
synchronisation costs become much more expensive as
more processors are used (see Section 5.2.9), this kind of
simulation with very simple car logic can not gain from
multi-processor support. However, this does not mean that
our traffic simulation can not gain from parallelism in
general. On the contrary, we will show in the following
paragraph how we can achieve a substantial speedup with
multiple processors, if we equip the cars with more com­
plex logic.

182

Zurich traffic Component C++ C#
simulation system (sequential) (concurrent)
(in minutes)

- ,..

1,000 cars 0.04 140 33
10,000 cars 0.6 140 out of memory
100,000 cars 13 190 out of memory

260,000 cars 76 210 out of memory

Table 7-2. Zurich simulation, runtimes in minutes, six processors

6 processors

33 sec

0.96 sec E~:4:::::::::::::::::::::::::......"

virtual time
synchronisations

car driving
synchronisations

independent
car logic

8.7 sec

24 see

0.29 sec

.................

1 processor .
.....

28 sec .

5.4 sec

Figure 7-4. Cost factors of the Zurich sirnu Jation, 10,000 cars

In order to demonstrate how our component-oriented
simulation can benefit from multi-processors, we use more
intelligent cars with inbuilt logic for trip and route planning
(Section 7.2.8). Table 7-3 summarizes the results of meas­
urements t<:Jr the exemplary corridor network'll and 10,000
cars52 on the six-processor machine. According to this, the
planning logic runs faster by a factor of 2.6 compared to
the execution on a single processor. In total, the simulation
achieves a higher performance by a factor of 2.] if we use
six processors instead of one.

51 Corridor network, http://www.matsim.org/fi les/test-net/nctwork

52 Cars specified by two day activities each, activities]argc.txt, part of the
digital material (Appendix D).

183

corridor traffic 1 processor 6 processors speedup
simulation
(in seconds)
planninq loqic 66 25 2.6
driving loqic 12 13 0.92
total time 78 38 2.1

Table 7-3. Multi-processor speedup with self-planning cars

7.5 Related Work

Traffic Simulation. Fully-fledged traffic simulation
packages [Matsim] exist that are used in practice to com­
pute traffic scenarios. Of course, it was not the objective of
this case study to develop a simulation system that provides
the same amount of functionality and details like these pro­
fessional systems. We rather limited ourselves to the fun­
damental features of a traffic simulation (as described in
[Nagel05, Part 11]), in order to evaluate our programming
language. Nevertheless, our simulation offers sufficient
functionality and has been used to simulate a realistic
traffic scenario. To improve the performance on multiple
processors, classical simulations usually employ parallel­
ism in a technical way: the road network is explicitly parti­
tioned into sub-parts, which are processed in parallel in
each time step [Nage105, Chapter 25]. With this approach,
car movements still remain controlled by a central program
instance that iterates over the time and explicitly schedules
the parallel updates of the road network parts. For high­
performance parallelism, the partitioning and the update
logic for parallel road parts need to be defined explicitly. In
our simulation, the driving logic is however contained
within the concurrent car activities and does not involve
traversal of road cells, such that road partitioning does not
necessarily lead to a better performance.

Virtual time. The concept of a virtual time has already
been extensively discussed for distributed simulation or
concurrency control. The most notable contributions came
from Lamport [Lam78] and Chandy and Misra [CM81]. In
these models, the virtual time is controlled by message

184

passing where the virtual time of the sender determines the
virtual reception time of message in the receiver process
(time-stamped messages). Though each process has its own
virtual time, the virtual clocks of interacting processes can
not run with different speeds, since a message can only be
received by a process when it has reached (at least) the
virtual time that the other process had at the time of
sending. The notion of virtual time that we introduced in
our language (see Section 7.2.1) is much more flexible,
because components do not necessarily need to be time­
synchronised if they exchange messages. Instead, our com­
ponents can also have independent times and can perform
arbitrary message communication within zero virtual time.

We can also demonstrate that our notion of virtual time
is more powerful than the other models with time-stamped
messages. If we do not allow the possibility of rollbacks in
the other models, the virtual clock of a process can only
proceed, if the process has received the next event message
from each potential sender. Otherwise, a process with a
lower virtual time could send a message to a process with a
higher virtual time, such that the message would arrive in
the virtual past of the receiver. With this conservative
mechanism of time progression, we can not implement the
traffic simulation (without awkward tricks): the virtual time
in a RoadLink component can only advance if all cars
signal their next event to the component (i.e. entering or
exiting the roadway). However, a car can only send such an
event if it has exited from a previous road link. This how­
ever leads to cyclic wait dependencies, as illustrated in
Figure 7-5. An impractical fix for this dilemma would be to
continuously send "no event" messages between com­
ponents. In each virtual step, cars would have to notify the
road link when they do nothing and road links must also
inform the cars when nothing happens. In our program, the
RoadLink components constitute time-synchronous sub­
components of the surrounding RoadNetwork components,
wherein the driving activities of the cars run as service

185

processes. The system automatically maintains the virtual
synchronism between these components.

car driving car driving
process process

owaf" waftf~0
wSitfort~ i wsitfor

enlfsncel ~~ enlfsnce

Figure 7-5. Cyclic event dependencies

186

Chapter 8

Conclusions

This dissertation has presented a new programming model
that goes beyond existing paradigms with regard to the
offered level of abstraction. With the use of a substantially
new component notion, we have developed a programming
language, which endorses accurate program structuring and
promotes the use of natural concurrency, while retaining
high dynamicity and safety. By means of an innovative
runtime system, we have also demonstrated that this pro­
gramming language can be efficiently implemented on
current computer machines.

8.1 Conceptual Results

We can conclude that the following major conceptual
advances have been made:

• Hierarchically controlled structures
For the first time, a programming language has
been invented which permits flexible structuring
without explicit use of pointers (or references). In
this language, both static and dynamic networks of
components can be constructed with arbitrary
shape in a clearly hierarchically controlled way.
As our case study and various smaller examples
show, the new relational concepts are capable of
replacing pointers in terms of expressiveness and
flexibility, by eliminating at the same time the

187

structural weaknesses of pointers (cf. Section
2.1.1).

• Hierarchical encapsulation
As another innovation, general hierarchical encap­
sulation is supported and guaranteed in our pro­
gramming language. Components are able to con­
tain arbitrary static and dynamic structures of sub­
components. The ordinary object notion is thereby
upgraded to a general component, which can
indeed encapsulate an implementation of arbitrary
complexity. As a result, a sustainable solution to
the well-known and often encountered object­
oriented encapsulation problems (cf. Section 4.1)
has been found.

• Safe concurrency
As our case study shows, the notion of autono­
mous components, which only interact by message
communication and not by method calls, also con­
veys more natural modelling than in mainstream
object-oriented languages. Components always
have their own fully encapsulated processes. In
contrast to languages that support method calls, a
component process in our language can not syn­
chronously execute the code of another com­
ponent. Therefore, the executions of the com­
ponents are fully disentangled and race-free con­
currency can be guaranteed (see Section 4.6).

• Symmetric polymorphism
We have been able to demonstrate that no artificial
complicated concepts are needed to build extendi­
ble and reusable software systems. The clear sepa­
ration between interfaces and implementation,
combined with symmetric interface polymorphism
(no preferred interfaces), allows us to achieve this
objective in a very simple but powerful way. The
fundamental relation of hierarchical composition
already provides sufficient means for flexible and
safe reuse of component functionality, avoiding

188

the technical problems and accidental complexity
of inheritance or other code reuse mechanisms.

• Interoperability
Our component language provides a general pro­
gramming model, which is also capable of inter­
operating with other programming languages
together in a well-organised and safe way. By
design, we permit that terminal components can be
implemented in any conceivable language. While
the component language is designed for general
programming at a high level of abstraction, low­
level or other particular functionality (i.e. for
device drivers or machine code) can be added in
terminal components which are implemented in
other languages. This allows us to keep our lan­
guage simple and retain a high level of generality
and conceptual consistency without the need of
incorporating any unsuited or special-purpose
constructs. We ourselves were able to successfully
employ this flexibility, by implementing the kernel
component of the system in a machine-close
language.

8.2 Technical Results

With regard to the language implementation, we achieved
the following major technical innovations:

• High scalability
With an innovative design, our runtime system
offers a particularly high scalability in the number
of supported processes. In particular, programs
with millions of parallel processes can be executed
in an effective way. This has been realised by the
integration of micro stacks and software-based
preemption. The stacks are no longer based on the
page granularity, while the preemption mechanism
eliminates conservative register backups. In con-

189

trast, conventional systems only allow a very small
constant amount of processes.

• Efficient concurrency
With our runtime system, we have demonstrated
that it is possible to also outperform conventional
systems in the execution speed of concurrent pro­
grams. This performance improvement also results
from the introduction of new concepts such as the
fast context switches enabled by software-based
preemption, as well as the omission of system
artefact"" such as garbage collection or virtual
memory management, that are no longer needed
for our programming model. By way of the traffic
simulation, we have demonstrated that the system
even supports programs with highly synchronised
processes so efficiently, that it outperforms analo­
gous classical sequential programming models.

• Abolition ofGarbage Collection
With our programming model, we have demon­
strated that automatic garbage collection is no
longer needed for programming with flexible
dynamic structures and with guaranteed memory
safety. In the field of imperative and object­
oriented programming, garbage collection is
widely known to cause technical problems which
have not yet been satisfactorily solved for decades
(see Section 2.1.5.2). As garbage collection has
now become superfluous for our programming
language, we have built a safe and reliable system
that is free of any unexpected disruptions of the
program execution.

8.3 Open Problems

During this dissertation, we also encountered problems that
we had to leave open:

190

• Deadlocks
Concurrency obviously involves a higher intrinsic
(natural) complexity than a merely sequential pro­
gramming model. Though artificial problems like
data races and primitive interaction deadlocks
have been eliminated in our language (see Section
4.6), more complex deadlocks resulting from
cyclic component interactions remain possible
(e.g. blocking on road junctions, Section 7.2.3).
We did not want to enforce too restrictive
technical rules, to alleviate such deadlocks (cf.
Appendix C).

• Insufficient hardware support
Current computer machines considerably lack in
the adequate infrastructural support of efficient
fine-granular concurrency. Synchronisation of
threads is extremely slow on current machines due
to the required maintenance of cache coherency.
Therefore, many concurrent programs can not gain
from parallelism with multiple processors, as they
involve frequent synchronisations due to message
communication and monitor locks. We neverthe­
less managed to design an efficient runtime
system which offers high speedups with multiple
processors for largely independent processes,
without however penalizing frequently synchro­
nised processes. This eventually allows us to use
concurrency, whenever it improves the program
model, and not only, when it improves the per­
formance.

8.4 Further Directions

Below, we mention a few ideas that could be pursued in
future projects but however went beyond the scope of this
dissertation.

191

• Other applications
As the object-oriented paradigm was initially in­
vented for simulation programming and eventu­
ally turned out to also be suited for many other
purposes, this may just as well be the same for our
programming model. Therefore, it remains to be
determined for which other application areas the
language is also particularly suited. Possible areas
are graphical user interfaces (due to the composi­
tional relations), internet service applications (due
to the client-individual service communications)
or perhaps time-critical concurrent programming
(due to the absence of garbage collection). The
latter however requires a machine that offers real­
time capabilities for concurrency, such as proces­
sor synchronisation within guaranteed time
boundaries.

• Other runtime platforms
Due to the high~level abstractions, our component
language is also predestined for implementation
on other runtime platforms. Without changes to
the programming model, the language can not
only run on a machine consisting of a single- or a
multi-processor but could just as well be executed
on a network of computers. The latter is possible,
as the concepts of message communications and
component networks should directly agree with
the distributed computing model. In contrast to
other languages, complicated distributed garbage
collection is no longer necessary due to the hierar­
chical component structures. Of course, one could
also investigate a runtime system that provides
support of persistence or real-time execution for
the components. In particular, built-in persistence
could be considerably simplified as no garbage
collector is required.

192

• Influence on existing fields
This work consists of various conceptual and
technical innovations, where some of them could
be also integrated in other languages or systems,
to improve their structure and safety. The concepts
of pointer-free structuring with hierarchical com­
position and network construction (by interface
connections) would for instance significantly en­
hance a classical object-oriented programming
language. Though, this would not attain the same
level of flexibly as in our language, which
supports arbitrarily complex statefull interactions.
Using ordinary method calls, the context of such
long-lasting interactions usually needs to be stored
at the client side by means of explicit pointers or
other pointer-like constructs (see Section 4.1).
Moreover, the concepts of autonomous compo­
nents and message communication seem to be in­
dispensable for the design of a natural object­
oriented language. However, without hierarchical
encapsulation and clearly specified structures, safe
concurrency can not be achieved in a simple and
comprehensible way. As for system construction,
the kernel may serve as a generic basis for a well­
structured compact operating system, where
specific memory management or preemption
mechanisms can be added on top of the kernel,
acting only as clients of the heap or the concur­
rency module.

In this dissertation, we aimed to design a new programming
language that noticeably improves the conceptual basis for
more natural and more structured programming. We
believe that we have found such a language and have dem­
onstrated its suitability by means of the simulation case
study and other concurrent programs. Therefore, we remain
curious as to whether a programming language like ours
could prevail within industrial or academic practice.

193

Appendix A

Language Report

A.I Notation

A.I.t Syntax

The syntax of the programming language is formally
defined in the Extended Backus Naur Formalism (EBNF)
[Wirth77b]. In Section A.13, the complete syntax specifi­
cation of the language can be found.

A.1.2 Semantics

For each programming concept, the semantics is informally
defined in prose text. Issues that are not specified have
been intentionally left so, either because a corresponding
rule can be inferred from the other specifications or
because the issue should not matter for the understanding
and use of a concept.

A.2 Program

A program has a dual nature with a static and runtime
character. Statically, it is a collection of templates, which
describe components with their interfaces in a textual for­
mat. At runtime, a program consists of components, which
have been created as instances from these templates. The
static description of a program has the following syntax:

Program:::: { Component I Interface }.

194

A.3 Components

A component constitutes a closed program unit at runtime,
which encapsulates an inner state and behaviour. Com­
ponents are only allowed to have external dependencies
over explicitly defined interfaces. Each component can
offer an arbitrary number of own interfaces and can require
an arbitrary number of foreign interfaces that belong to
other external components.

Three elementary relations govern structures among
components:

• Hierarchical composition
Each component can be hierarchically composed,
by containing an arbitrary number of inner com­
ponents (sub-components).

• Interface connections
An arbitrary network of components can be built
by connecting the required interfaces of a com­
ponent to offered interfaces of other components.

• Communication~based interactions
Components interact via interfaces by communi­
cations.

A component is created at runtime from a statically defined
component template, which specifies the offered and
required interfaces, as well as the concrete implementation.
The same template can be used to create multiple com­
ponents of the same specification.

Component =COMPONENT Identifier
[OFFERS InterfaceDeelList]

[REQUIRES InterfaceDeclList] ";"
ComponentBody

END Identifier ";".
InterfaceDeclList = InterfaceDecl { "," InterfaceDecl }.
InterfaceDecl = Identifier ["[" Noflnterfaces "]"].

195

Each component template has an identifier that is specified
both at the beginning and at the end of the declaration. The
body of the declaration represents a new program scope,
which describes the internal implementation of the
creatable components. Offered or required interfaces are
declared by the identifiers of their corresponding interface
specifications in the OFFERS- and REQUIRES-list respec­
tively. The declaration order within the list is irrelevant, Le.
all interfaces of the same list have equal importance. The
identifier of an interface specification can occur no more
than once in the same list.

Examples:
COMPONENT StandardHouse
OFFERS Residence, ParkingSpace
REQUIRES Electricity, Water (* ... *)

END StandardHouse;

COMPONENT River
OFFERS Water;

END River;

COMPONENT HydroelectricPowerPlant
OFFERS Electricity
REQUIRES Water; (* ... *)

END HydroelectricPowerPlant;

By default, a declared identifier of the REQUIRES-list
means, that exactly one interface with this specification is
required from an exterior component. A component is also
able to require multiple interfaces with the same specifica­
tion from outside. In this case, the number of required
instances has to be specified after the corresponding decla­
ration by using the following syntax:

Noflnterfaces = Integer [".. " (Integer 1"*")].

The number of interfaces of the same specification may be
either static or defined in a dynamic range between a
minimum and maximum value. The maximum number of
interfaces may be unbound using the star symbol.

196

Examples:
COMPONENT AcademicAssistant

OFFERS Student, Employee
REQUIRES University, Supervisor [2..*];

(* at least two Supervisors required *)
END AcademicAssistant;

COMPONENT CompanyBuilding
OFFERS OfficeSpace, ParkingSpace
REQUIRES Electricity [1 ..3], Water [2];

(* one to three Electricity and two Water lines required *)
END CompanyBuilding;

COMPONENT Programmer
REQUIRES Computer, Network [0.. 1];

(* Network optionally required *)
END Programmer;

A.4 Interfaces

An inteiface represents an external facet of a component
and establishes a possible interaction point between the
component and its exterior environment. As possible inter­
actions, an interface enables communications between the
server component, which offers the interface, and the client
components, which have a required interface connected to
the corresponding interface. The processes inside the sur­
rounding component of the server may act as further clients
of the offered interface.

The server component always maintains a separate
communication with each client component individually.
Thereby, a communication generally involves bidirectional
message transmissions, specified by a formal protocol. The
transmission of a message implies that one component
sends the message and the other side explicitly receives it.

Each interface requires an inteiface specification,
stating the communication protocol for that interface. The
same interface specification can be used to declare offered
or required interfaces for multiple components.

197

Interface = INTERFACE Identifier ";"
Protocol

END Identifier ";".

Each interface specification has an identifier that is denoted
both at the beginning and at the end of the specification. A
new program scope is induced by the specification, con­
taining the protocol description.

Examples:
INTERFACE Student;

(* ... *)
END Student;

INTERFACE Electricity;
(* ... *)

END Electricity;

A.4.1 Protocol

The protocol of an interface specification defines all
feasible sequences of message transmissions, which are
allowed during the communication between a server and a
cHent. The communication protocol is formalised in a
regular EBNF-expression [Wirth77b], using message dec­
larations instead of terminal symbols. A message declara­
tion consists of a transmission direction, a message identi­
fier and an optional parameter list. Messages with direction
IN go from the client to the server, whereas messages with
direction OUT are sent from the server to the client. Before
a client finishes a communication, the predefmed message
IN FINISH without parameters is automatically sent to the
server and optionally received by the server.

Protocol
ProtocolExpr
ProtocolTerm
ProtocolFactor

MessageDecl

=[ProtocolExpression].
= ProtocolTerm { "I" ProtocoITerm}.
= ProtocolFactor { ProtocolFactor }.
= MessageDecl
I "[" ProtocolExpr '']''
I "{" ProtocolExpr "}"
I "(" ProtocolExpr ")".
=(IN lOUT) Identifier ["(" ParameterList ")"].

198

Examples:
INTERFACE SignalStream;
{ OUT Signal} OUT Finished

END SignalStream;

INTERFACE HotelService;
{

IN Checkln
(

OUT AssignedRoom
{ IN EnterRoom IN ExitRoom}
IN CheckOut
OUT Bill
[IN DirectPayment]

OUT FullyBooked

}
END HotelService;

A.4.1.2 Message Parameters

A parameter in a message declaration specifies a com­
ponent or data value which is transmitted at runtime within
a corresponding message. Each parameter has an identifier
that must be unique among all parameters in the same
parameter list.

ParameterList
ParamSection
IdentifierList

== ParamSection { ";" ParamSection }.
== IdentifierList ":" Type.
= Identifier { "," Identifier }.

Example:
INTERFACE Library;
{

IN RequestBook(isbn: ISBN)
(OUT BorrowedBook(b: Book) lOUT Unavailable)

IN ReturnBook(b: Book)
}

END Library;

199

A.5 Component Implementations

The body of a component template describes the imple­
mentation of the components, which are created from the
template. All constructs in the body are fully encapsulated
and are neither visible nor accessible from outside.

ComponentBody =: { Declaration}
{ Implementation}
[BEGIN StatementSeq] II initialisation
[ACTIVITY StatementSeq] II main activity
[FINALLY StatementSeq]. II finalisation

Declaration = Component I Interface IConstantList I
VariableList IProcedure.

A.5.1 Lifecycle

The component's lifetime is exclusively controlled by the
surrounding component and consists of three phases:

1. Initialisation. The initialisation phase starts
immediately with the creation of the component.
The initialisation process defined in the BEGIN­
block runs independently of the creator.

2. Main activity. After initialisation and before finali­
sation, the component accepts communications via
its offered interfaces, by automatically starting an
individual service process for each individual
client communication. During this phase, the
ACTIVITY-block also runs as an intrinsic process
of the component.

3. Finalisation. Before the deletion of a component,
the finalisation phase of the component has to be
passed through. A customised finalisation process
can be specified in the FI NALLY-block of the
component template.

A component is only deleted by its surrounding component,
either explicitly (cf. Section A.7.7) or implicitly, when the
outer component is also deleted. All communications of a
deleted component are automatically closed.

200

A.5.2 Declarations53

Every identifier occurring in a program must be introduced
by a declaration, unless it is a reserved keyword.

A declaration always belongs to a scope, which is
either delimited by the directly surrounding program block
(component template, interface specification, interface im­
plementation, or procedure declaration) or the global scope,
if not contained in a program block. Within the same scope,
all declarations must have different identifiers.

An identifier can be used to refer to the program
element of the corresponding declaration. This is however
only possible in those program parts, which have visibility
of the declaration. The following rules govern the visibility:

1. A declaration is always visible inside its own
scope. Declarations in the global scope are visible
to all programs in the system.

2. If a declaration is visible inside a scope, it is also
visible within an inner (nested) scope, unless the
identifier is reused for another declaration in the
inner scope. The visibility of variables and proce­
dures is restricted to those scopes, which are
directly located in the same component.

A.5.3 Interface Implementations

An interface implementation specifies the service processes
for an offered interface of the containing component. For
each client of an offered interface, a separate service
process is automatically incarnated, concurrently running
inside the server component and communicating with the
corresponding client side.

53 Parts of this section are adopted from the Oberon language report
[Wirth90].

201

Implementation = IMPLEMENTATION Identifier ";"
{ Declaration}
[BEG IN StatementSeq]

END Identifier" ;".

An interface implementation identifies the offered interface
at the beginning and end of the declaration block. Interface
implementations may feature own local declarations
together with a statement sequence, describing the service
process.

Example:
COMPONENT Hotel OFFERS HotelService;
VARIABLE room[number: INTEGER]: HotelRoom;

IMPLEMENTATION HotelService;
VARIABLE freeRoomNo: INTEGER;

BEGIN (* ... *)
END HotelService;

END Hotel;

A.S.4 Message Communication

Messages are exchanged between a process of a client
component and the service process of a server component
by means of send- and receive-statements (Sections A.7.5
and A.7.6). In addition, receive guards (Sections A.8.1 and
A.8.2) can be used to decide at runtime, which message can
be received.

Examples:
HoteIService!Checkln;

(* send the Checkln message to HotelService interface *)
IF HotelService?AssignedRoom THEN

(* test whether the next arriving message is AssignedRoom *)
HoteIService?FreeRoom(number)

(* receive the AssignedRoom message from HotelService *)
ELSE

Hotel?FullyBooked (* receive the FullyBooked message *)
END

For all client-side communication statements and receive
guards, the interface of communication has to be explicitly
designated, whereas it is omitted for all server-side com­
munication commands. Server-side communication com-

202

mands can be only used within an interface implementation
block. The interface designator at the client side refers to
either a required external interface of the local component
or an offered interface of a sub-component.

Examples:
HotelService!CheckOut (* client-side communication *)

1M PLEMENTATION HotelService;
BEGIN

?Checkln (* server-side communication *)
END HotelService;

A message declared with transmission direction IN has to
be sent by the client side and received by the server side,
whereas the opposite holds for messages with direction
OUT. All messages have to be transmitted according to the
protocol of the corresponding interface specification.

A communication automatically starts, when the client
executes the first communication statement or guard with
regard to the corresponding interface. Thereby, the client
waits until the interface is connected to a server. It finishes
either when the last message according to the protocol has
been sent or, when the server component is moved or
deleted and the predefmed FINISH message is automati­
cally sent to the server side (see Section AA.l). A client is
also allowed to restart a communication via the same inter­
face after the previous communication has been finished.

Inside a component, each process maintains a separate
communication with an offered interface of a sub-com­
ponent. They however share the same communication with
regard to a required interface of the local component.

A.5.5 Constants

The declaration and use of constants IS the same as m
Oberon [Wirth90].

ConstantList
Constant
ConstantExpr

= CONSTANT Constant { Constant }.
= Identifier "=" ConstantExpr ";".
= Expression.

203

A.5.6 Variables

A variable defines a separate container, in which com­
ponents or data values can be stored. Variables are declared
with an identifier and a signature of the therein storable
components. Variables enable the construction of
hierarchical compositions: a component contains direct
sub-components within its variables which are declared in
the scope of its template. For this purpose, a component
can be created at runtime within a variable (see Section
A.7.2) and its interfaces can be connected to matching
interfaces of other components which are defined inside the
same scope (see Section A.7.3).

A variable may be also declared in an interface imple­
mentation block (see Section A.5.3), such that each service
process created from the block owns an individual variable.
The content of a variable only exists as long as the sur­
rounding scope is active, i.e. a sub-component is auto­
matically deleted when the surrounding component is dis­
posed of or the owning service process ends. The following
syntax is used for declaring variables:

VariableList =VARIABLE VariableSection { VariableSection }.
VariableSection = IndexedldentList ":" Type [AttributeList] ";".
IndexedldentList = Indexedldent { "," Indexedldent}.
Indexedldent = Identifier ["[" ParameterList "]"].

A variable is either a normal variable or a collection vari­
able.

A.5.6.1 Normal Variables

A normal variable is declared without parameters and
represents a storage location for a single component of a
defined signature or a data value of a defined type. The
variable name directly identifies the contained component
or value.

Examples:
VARIABLE

Paul, Fred: AcademicAssitant;

204

IivingRoom, bedroom: ANY(Room I Electricity);
counter: INTEGER;
name: TEXT;

Initially, the storage location of a normal variable with a
component signature is empty until a component has been
assigned to it. Variables with a data type are initialised with
the following default values: FALSE for BOOLEAN, 0 for
INTEGER, 0.0 for REAL, OX for CHARACTER and "" for
TEXT.

A.5.6.2 Collection Variables

A collection variable is declared with a parameter list and
stores a dynamic collection of components of a defined
signature or data values of a defined type. The parameter
list specifies a set of indexes for the identification of the
elements in the collection. Each index refers to a separate
storage location of a component in the collection. An index
is represented as an expression list of data values which are
compatible with the declared parameter list. Parameters
must have different identifiers within the same parameter
list.

Examples:
VARIABLE
book[isbn: INTEGER]: Book;
person[firstname, surname: TEXT]: ANY(Person);

Initially, a collection variable has no stored elements and
all possible indexes identify empty storage locations.

A.5.7 Procedures

A procedure forms a sequential execution part of an
internal process in a component. Procedures only serve as
internal implementation pieces of a component and can not
be directly invoked from outside. Apart from this, the dec­
laration and use of procedures is equal to Oberon
[Wirth90].

205

Procedure = PROCEDURE Identifier ["(" [ProcParamList] ")"
[":" Type]] ";"

{ Declaration}
[BEG IN StatementSeq]
END Identifier ";",

ProcParamList = ProcParSection { ";" ProcParSection }.
ProcParSection= [VARIABLE] ParamSection.

A.6 Types

A type specifies static properties of data values or the com­
ponents. There are two kinds of types, namely data types
and component signatures.

Type = Identifier I ANY ["(" AnylnterfaceList ")"].

A.6.t Data Types

A data type determines a set of data values and thereon
applicable operators [Wirth90]. Alike Oberon, the data
types INTEGER, REAL, BOOLEAN, CHARACTER are pre­
defined. In addition, the data type TEXT is introduced,
comprising all character sequences.

A.6.2 Component Signatures

A component signature specifies static properties about a
component that is used in a program. It may be a concrete
component signature, an abstract component signature or
the generic component signature.

A.6.2.t Concrete Component Signatures

A concrete component signature is defined by the template
of the component.

Examples:

AcademicAssistant StandardHouse GraphicalSquare

206

A.6.2.2 Abstract Component Signatures

An abstract component signature does not detennine a
specific component template but only postulates a set of
offered and required interfaces of the component. The
component can be of any template that fulfils the following
requirements:

1. The component template offers at least the inter­
faces which are postulated as offered by the
signature. These interfaces are always guaranteed
to be provided by the component.

2. The component template requires at most the
interfaces which are postulated as required by the
signature. The range specifying the number of
interfaces with the same name has to match
exactly. These interfaces have to be provided by
the exterior runtime environment of the com­
ponent, in order to be able to interact with the
component's offered interfaces.

An abstract signature is described by the ANY-construct,
which states a list of postulated offered interfaces followed
by a list postulated required interfaces. The two lists are
separated by a vertical bar.

AnylnterfaceList = [InterfaceDeclList] ["I" InterfaceDeclList].

Examples:

ANY(Student, Employee IUniversity, Supervisor)
(* offers at least Student and Employee,

requires not more than University and Supervisor *)
ANY(Rectangle, Graphic) (* no required interfaces *)
ANY(OfficeSpace IElectricity [1 ..3], Water [2])
ANY(IComputer, Network [0.. 1]) (* no offered interfaces *)

207

A.6.2.3 The Generic Component Signature

The generic component signature represents any com­
ponent. It is denoted by the keyword ANY without follow­
ing round brackets. As no offered interfaces are postulated,
no required interfaces have to be guaranteed either.

A.6.3 Type Compatibility

The notion of type compatibility serves to statically ensure
a consistent use of components and data values in a pro­
gram.

An expression or parameter of type X is type-com­
patible with an expression or parameter of type Y, if and
only if,

• X and Y are identical types or,

• Y is an abstract component signature and X is a
component signature, such that all offered inter­
faces of Y are declared to be also offered by X and
all required interfaces of X are declared to be also
required by Y or,

• Y is the generic component signature and X is a
component signature.

A list X of expressions or parameters is type-compatible
with a list Y of parameters or expressions, if and only if,

• X and Y have the same number of elements and,

• for each valid position i in X, the type of the jth

element of X is type-compatible with the type of
the jth element in Y.

208

A.7 Statements54

A statement sequence describes the sequential execution of
statements, separated by semicolons. Statement sequences
may be attributed with a directive for concurrency syn­
chronisation (see Section A.7.1).

StatementSeq
StatementList

=[AttributeList] StatementList.
= Statement { ";" Statement }.

A statement denotes an action of the component runtime
behaviour. Statements are either elementary or composed
of other statements. Elementary statements are assign­
ments, communication statements (send and receive), the
NEW-, CONNECT-, DISCONNECT-, DELETE-, MOVE-,
AWAIT-statement, as well as procedure calls, the RETURN­
statement and the empty statement. Composed statements,
like the IF-, WHILE-, REPEAT-, FOR- and FOREACH­
statements, as well as statement blocks, allow the struc­
tured description of sequential, alternative, and repetitive
execution. The empty statement, which is not written, does
not have any effect but only serves to relax the use of semi­
colon separators in a statement sequence.

Statement = [Assignment INew I Connect IDisconnect
I Send I Receive IDelete IMove IAwait
I ProcedureCali I Return Ilf I While
IRepeat I For I Foreach I StatementBlock].

The definition of assignment statements, procedure calls,
and of the RETURN-, IF-, WHILE-, REPEAT- and FOR­
statements is the same as in Oberon [Wirth90]. Assignment
statements can be only applied to variables with a data
type.

54 This section is partially based on the language reports of Oberon
[Wirth90] and Zonnon [GZ05].

209

A.7.1 Concurrency Synchronisation

The attribute EXCLUSIVE or SHARED can be annotated to
a statement sequence, establishing a component lock during
the execution of that sequence. An exclusive statement
sequence is only executable if no other shared or exclusive
block runs at the same time inside the same component.
Conversely, shared statement regions can be executed in
parallel and are only mutually barred against exclusive
regions of the component.

Examples:
BEGIN {EXCLUSIVE}
(* statement list *)

END

BEG IN {SHARED}
(* statement list *)

END

All potential parallel accesses to shared variables, which
are directly declared in the component scope, as well as to
required interfaces of the local component have to be
appropriately synchronised. More specifically, this requires
an exclusive lock for all modifications of the content of a
shared variable, as well as for communication with the
local required interfaces. All other statements, which only
involve reading of data values, interface tests, type guards
and communications with regard to shared variables, need
at least a shared lock.

The initialisation and finalisation process of a com­
ponent always runs exclusively and hence does not need
explicit synchronisation. Nested use of exclusive or shared
statement locks within a statement sequence is not allowed.
If a procedure contains a synchronisation attribute, it can
not be (directly or indirectly) called by another exclusive or
shared region. A procedure may modify and read a shared
variable without lock attribute, if there is no other possibil­
ity than to (directly or indirectly) call the procedure from
an exclusive or shared region, respectively.

210

A.7.2 The NEW-Statement

The NEW-statement creates a new component from a
defined component template and assigns it to a storage
location, specified by the designator of the first argument.
The possible previous content of the storage location is
thereby deleted. If the designated storage location is
declared with a concrete component signature, the new
component is implicitly created from the declared com­
ponent template. Otherwise, the component template ought
to be explicitly specified by the identifier in the second
argument. The component template of the second argument
must satisfy the signature of the storage location.

New =: NEW "(" Designator ["," Identifier] ")".

Examples:
VARIABLE house: Mansion;
NEW(house)
(* create a new component of the Mansion component template *)

VARIABLE student: ANY(Student IUniversity, Supervisor);
NEW(student, AcademicAssistant)
(* create a new component of the AcademicAssistant template*)

The NEW-statement may be also applied to allocate a new
TEXT value of a certain length. The first argument thereby
designates the corresponding storage location, whose
previous content is also disposed of. The further arguments
specify the length for TEXT value.

A.7.3 The CONNECT-Statement

The CONNECT-statement connects a required interface of a
component to an offered interface of another component.
The required and the offered interface thereby have to be of
the same interface specification. The first argument of the
statement denotes the required interface, whereas the
offered interface is defined by the second argument.

Connect =: CONNECT "(" Designator "," Designator ")".

211

Multiple required interfaces can be connected to the same
offered interface. The CONNECT-statement must not be
applied to a required interface that is already connected.

A component can also connect its external offered or
required interfaces. An offered external interface of a com­
ponent is regarded as a required interface for connections in
the internal component implementation. Similarly, a
required external interface represents an offered interface
for connections inside the component.

There are three kinds of interface connections:

A.7.3.1 Connect Sub-Components

A component can connect the required interface of a sub­
component to an offered interface of another sub-com­
ponent. The first argument designates the required inter­
face, while the second argument denotes the offered inter­
face or, as a short cut, the component which offers this
interface. In the latter case, the offered interface can be
automatically derived from the first argument.

Examples:
VARIABLE house: StandardHouse; river: River;
BEGIN

NEW(house); NEW(river);
CONNECT(Water(house), river);

VARIABLE company: CompanyBuilding; powerPlant: PowerPlant;
BEGIN

NEW(house); NEW(powerPlant);
CONNECT(EIectricity[2](house), powerPlant);
(* CompanyBuilding requires multiple Electricity interfaces *)

VARIABLE motor: ANY(Motor IGear); gearbox: ANY(Gear);
BEGIN

NEW(motor); NEW(gearbox);
CONNECT(Gear(motor), gearbox)

The required interface of a component, which is stored in a
component-local variable, can not be connected to an inter­
face of a component, which is contained in the scope of an
implementation block or procedure declaration. This is

212

because the lifetime of these scopes is generally shorter
than that of the component.

A.7.3.2 Redirect Offered Interfaces

A component can also connect an offered external interface
of its own to an offered interface of a sub-component. The
first argument designates the offered external interface,
while the second argument denotes the offered interface of
the sub-component or, as a short cut, the sub-component di­
rectly.

Example:
COMPONENT House OFFERS ParkingPlace;
VARIABLE garage: Garage;

BEGIN
NEW(garage);
CONNECT(ParkingPlace, garage);

END House;

A.7.3.3 Redirect Required Interfaces

In addition, a component can connect a required interface
of a sub-component to either a required external interface
or alternatively, an interface implementation block of its
own. The first argument designates the required interface of
the sub-component and the second argument the name of
the external required interface or the implementation block.

Example:
COMPONENT House REQUIRES Electricity, Water;
VARIABLE bathRoom: ANY(Room IElectricity, Water);

BEGIN
NEW(bathRoom);
CONNECT(Electricity(bathRoom), Electricity);
CONNECT(Water(bathRoom), Water)

END House;

A.7.4 The DISCONNECT-Statement

The DISCONNECT-statement disconnects the required
interface of a component from its connected interface. It
may also disconnect the offered interface of the locally
surrounding component that is redirected to another inter-

213

face. Before disconnecting, the statement waits until the
interface has no open communications.

Disconnect =DISCONNECT "(" Designator ")".

Example:
VARIABLE house: StandardHouse; river: River;
BEGIN

CONNECT(Water(house), river);
DISCONNECT(Water(house))

A.7.S The Send-Statement

The send-statement sends a message via an interface to the
other communication partner. This may (but does not need
to) happen asynchronously, i.e. without awaiting the accep­
tance of the message by the other side. The arguments of
the expression list specify components or data values that
are transmitted as content of the sent message.

Send = [Designator] "!" Identifier ["(" ExpressionList ")"].
ExpressionList =Expression { "," Expression }.

An argument is either the variable designator of a com­
ponent, which is delivered by moving, or the expression of
a data type, which is sent by copying. In the fIrst case, the
component is removed from the designated variable. A
component can only be sent within a message, if it does not
have any connected interfaces or non-terminated communi­
cations. The argument list of a send-statement has to be
type-compatible with the parameter list of the message
declaration.

Examples:
HotelService(hotel)!Checkln

(* c1ient~side send of a Checkln message *)
PhoneBook! RequestPhoneNumber("John", "Smith")

(* client-side send with two parameters *)
!LentBook(book)
(* server-side send, the book is moved to the other side *)

214

A.7.6 The Receive-Statement

The receive-statement awaits the anival of a specific
message from the other communication side and accepts
the message on arrival. The possible contained components
of the received message are eventually assigned to the
storage locations, which are specified as arguments.
Thereby, the previous content of the storage locations is
automatically deleted.

Receive = [Designator] "?" Identifier ["(" DesignatorList ")"].
DesignatorList = Designator { "." Designator}.

The execution of the receive-statement blocks as long as
the message is not received. The statement does not release
a monitor lock, in order to also allow the implementation of
non-interfered communication processes. Instead, the
AWAIT-statement has to be used if a monitor lock should be
released while waiting for a message. The reception of a
wrong message with the receive-statement violates the
protocol and is forbidden. The parameter list of the
message declaration must be type-compatible with the list
of storage location designators, which are denoted as the
arguments of the receive-statement.

Examples:
?Checkln (* server-side receive of a Checkln message *)
?RequestPhoneNumber(firstname, surname)

(* server-side receive with two parameters *)
Library?LentBook(b) (* client-side receive *)

A.7.7 The DELETE-Statement

The DELETE-statement disposes of the component in a
designated storage location. It is used to discard a com­
ponent before the automatic deletion at the termination of
the surrounding component or service process. The storage
location must not be empty and the component must not
have any connections to its offered interfaces. The required
interfaces of the deleted component are automatically
disconnected.

215

Delete = DELETE "(" Designator ")".

Example:
VARIABLE book[isbn: INTEGER]: Book;
BEGIN
NEW(book[12345]);
DELETE(book[12345])

A.7.8 The MOVE-Statement

The MOVE-statement removes a component from a storage
location and installs it in another. The source location is
designated first and must be type-compatible with the
designator of the target location that follows as second
argument. The possible previous content of the target
storage location is thereby ended.

Move = MOVE "(" Designator "," Designator ")".

Examples:
VARIABLE source: ScientificBook; target: ANY(book);
BEGIN
NEW(source);
MOVE(source, target)

A component which is moved must not have any connected
interfaces. All client communications with the moved com­
ponent are automatically finished.

A.7.9 The AWAIT-Statement

The AWAIT-statement blocks the execution as long as a
defined expression of a Boolean type evaluates to FALSE.
An AWAIT-statement can only be used inside a statement
sequence with an EXCLUSIVE or SHARED lock. It tempo­
rarily releases the lock while waiting, in order to allow the
fulfilment of the condition by another exclusive region in
the component.

Await = AWAIT "(" Expression ")".

216

Example:
AWAIT(length < Maximum)

A.7.10 The FOREACH-Statement

The FOREACH-statement iterates over all elements of a
collection variable. Each iteration step assigns the index of
a present element to the specified designator list. The
iteration is sequential but there is no specific order of
traversal.

Foreach = FOREACH DesignatorList OF Designator DO
StatementSeq

END.

The collection variable is denoted by the designator fol~

lowing the OF symbol. The designator list determines a list
of storage locations, to which the values of the index are
assigned in each iteration step. The declared parameter list
of the collection variable must be type-compatible with the
list of storage location designators. The values of the index
must not be modified inside the FOREACH-statement.

Example:
VARIABLE person[firstname, surname: TEXT]: Person; x, y:
TEXT;
BEGIN

FOREACH x, y OF person DO
person[x, y]!Question

END

A.7.11 Statement Blocks

A statement block groups a logically coherent statement
sequence that may feature its own synchronisation
attribute.

StatementBlock = BEGIN StatementSeq END.

217

A.8 Expressions

The defmition of expressions is the same as in Oberon
[Wirth90], except for some minor amendments. The logical
operator AND is used in symmetry to the operator OR.
Moreover, either one of the attributes EXCLUSIVE or
SHARED can be annotated to an expression, in order to
establish an exclusive or shared component lock during the
evaluation of the expression.

Expression = [AttributeList]
(SimpleExpr

[("=" 1"#" 1"<" 1"<=" 1">" 1">=")] SimpleExpr
I Designator

(OFFERS I REQUIRES) InterfaceDeclList
I Designator IS Type).

SimpleExpr =["+" I"-"] Term { ("+" I"-" lOR) Term }.
Term =Factor { ("*" I"/" I DIV I MOD I AND) Factor }.
Factor =Operand I"~" Factor I "(" Expression ")".

The OFFERS relation tests whether a designated com­
ponent offers a set of interfaces, denoted by the identifier
list of the corresponding interface specification. Analo­
gously, the REQUIRES relation results TRUE if the
designated component requires a specified set of interfaces.
If multiple interfaces of the same specification are required,
the result is only TRUE if the range for the number of inter­
faces is equal to the one in the component template. The IS
relation describes a type test, determining whether the
actual template of the component fulfils a specific signa­
ture.

Examples:
student OFFERS Student, Employee
student REQUIRES Supervisor [2 ..*]
student IS AcademicAssistant

Apart from the usual Oberon operands, receive guards and
the EXISTS-test are available:

Operand =Number IConstChar IText IDesignator I
ReceiveTest IlnputTest I ExistsTest I FunctionCal1.

218

A.S.l The Receive-Test

The receive-test results a Boolean value which is TRUE, if
any or a specific message has arrived over a designated
interface, by first awaiting a message input from the inter­
face. It blocks the execution until the arrival of a message
but does not receive the message or assign the parameters.

ReceiveTest
MessagePattern

=[Designator] "?" MessagePattern.
= Identifier IANY IFINISH.

The message pattern is ANY, if an arbitrary message is
awaited, or it is the identifier of a specific message. The
predefined FINISH-message (see A.5A) signals the client­
side termination of the communication.

Examples:
IF Library?BorrowBook (* client-side receive test *) THEN

(* ." *)
END

IF ?BookRequest (* server-side receive test *) THEN (* ... *) END

A.S.2 The INPUT-Test

The INPUT-test results a Boolean value which is TRUE, if
any or a specific message has arrived from a designated
interface. The INPUT-test does neither block the execution
nor accept the message.

InputFunction = INPUT "(" [Designator ","] MessagePattern ")".

Examples:
IF INPUT(Library, BorrowBook) (* client-side input test *) THEN

(* ... *)
END

IF INPUT(BookRequest) (* server-side receive test *) THEN
(* ... *)

END

219

A.8.3 The EXISTS·Test

The EXISTS-test results a Boolean value which is TRUE, if
a component is contained in the designated storage
location.

ExistsTest::: EXISTS "(" Designator ")",

Example:
(* VARIABLE building[street: TEXT; number: INTEGER]: House;*)
EXISTS(building["Street A", 45])

A.9 Designators

A designator refers to a constant, variable, component, or
interface. It is represented by an identifier and may be
combined with a selector, if the designated element is part
of another construct.

Designator::: Identifier
I Identifier "[" ExpressionList "] II indexed selection
I Designator "(" Designator ")" II interface selection
I Designator "(" Type ")". II type guard

A.9.1 Variable Designators

A variable designator is denoted by the identifier of the
corresponding variable. The designator has the declared
type of the variable.

Examples:
book (* refers to VARIABLE book: Book *)
building (* VARIABLE building[postaIAddress: TEXT]: House; *)

A.9.2 Storage Location Designators

A storage location designator refers to either a normal
variable, a location in a collection variable, or a procedure
parameter. It has the same type like the variable or proce­
dure parameter.

220

In the case of a normal variable, the storage location
designator is the variable designator itself.

For a collection variable, the storage location
designator is V[E], where V is the variable designator and E
is an expression list, which defines the index of the location
in the collection. E must be type-compatible with the
declared parameter list of the collection variable.

Examples:
x building["12 Market Street"]

A.9.3 Component Designators

A component designator is denoted by the designator of the
storage location, wherein the component is stored. It has
the same signature like the storage location, which must not
be empty when the designator is evaluated.

Examples:
book bUilding["Market Street", 4]

Alternatively, a component designator may also be a type
guard X(D), which asserts at runtime that the component
designated by X satisfies the signature D.

Example:
VARIABLE student: ANY(Student IUniversity, Supervisor [2 ..*]);
student(AcademicAssistant)
student(ANY(Student, Employee I University, Supervisor [2..*]))

A.9.4 Data Value Designators

A data value designator is denoted by the designator of the
storage location, wherein the data value is stored. It has the
same type like the storage location, which must not be
empty when the designator is evaluated.

Example:
matrix[3, 4]
(* VARIABLE matrix[row, column: INTEGER]: REAL; *)

221

For a data value A of the type TEXT, A[k] designates the kth

character in the character sequence of A, where k is an
INTEGER expression.

A.9.4 Interface Designators

An inteiface designator denotes an offered or required
interface of a sub-component or the local component itself.
The place of use (context) defines whether it refers to an
offered or a required interface.

For sub-components, an interface designator is typi­
cally denoted as J(X), where X is the designator of the sub­
component and J the identifier of the interface specifica­
tion. Only in the case of multiple required interfaces of the
same specification has the interface to be designated by
J[i](X), where i defmes the index in the form of an
INTEGER expression. The index must be between 1 and the
specified maximum number of required interfaces. The
interface J must be specified as offered or required by the
statically declared signature of X.

As a short cut, an offered interface of a component
may be also referred to as the component designator, if the
component only offers one interface.

Examples:
(*VARIABLE building: ANY(Residence IElectricity [1 ..2], Water);*)
Residence(building)
building (* short-cut *)
Electricity[1](building)

For external offered or required interfaces of the local
component, an interface is typically designated by the
identifier of the corresponding interface specification. Only
if the component requires multiple required interfaces of
the same specification has the designator to be denoted as
J[i], where J is the identifier of the interface specification
and i the index expression.

222

Examples:
COMPONENT CompanyBuilding
OFFERS OfficeSpace REQUIRES Electricity [2 ..*], Water;

BEGIN
Water (* required Water interface of CompanyBuilding *)
Electricity[2] (* second required Electricity interface *)

END CompanyBuilding;

A.tO Virtual Time

An inbuilt concept of virtual time is featured for simulation
programming. By default, each component is equipped
with an individual intrinsic virtual time that corresponds to
the simulated physical time. All computing operations
happen within zero virtual time, while the virtual time only
proceeds by means of the PASSIVATE- and AWAIT­
statements.

A.IO.I The PASSIVATE-Statement

The PASSIVATE-statement defines that the process is to be
suspended for a certain amount of virtual time. The execu­
tion only continues when all other processes within the
same component wait for a virtual time, that is equal or
larger than the end time of the PASSIVATE-statement.

Example:
PASSIVATE(100)
(* the process suspends for the duration of 100 units of

the virtual time *)

If used inside an EXCLUSIVE or SHARED statement
sequence, the corresponding lock is temporarily released
when the process is waiting.

A.IO.2 The AWAIT-Statement

With the AWAIT-statement, a process waits for an
undefmed virtual time, as long as a certain Boolean
condition is not satisfied. The execution continues when the
condition is established for the first virtual time.

223

Examples:
AWAIT(hasFreeRoom)

(* awaits the condition, now or in virtual future *)
AWAIT(lNPUT(Message))

(* awaits the message, while virtual time may elapse *)

The AWAIT-statement can only occur inside an
EXCLUSIVE or SHARED statement sequence. Thereby, the
monitor lock is temporarily released while the process is
waiting.

A.I0.3 The TIME-Variable

The predefined read-only variable TI ME of the type
INTEGER reflects the current virtual time inside a com­
ponent.

Example:
TIME (* read-only access to the current virtual time *)

A.I0.4 Hierarchical Time-Synchronisation

A component may contain sub-components, which have the
same virtual time like the container. By annotating the
attribute SYNCHRONOUS to the corresponding variables, a
component may identify such sub-components. The virtual
time of the sub-components is then exactly time-synchro­
nous to the outer instance.

Example:
COMPONENT TrafficSimulation

VARIABLE car[id: INTEGER]: Car {SYNCHRONOUS}
(* all subRcomponents car[..] have the same virtual time like

the surrounding TrafficSimulation *)
END TrafficSimulation;

224

A.ll Language Symbols

The definition of lexical symbols and comments is equal to
Oberon [Wirth90], except the introduction of attributes. An
attribute can be associated to a syntactical construct, in
order to specify additional semantics for the construct.

AttributeList:::: "{" IdentifierList "}",

A.12 Predefined Features55

A.12.1 Predefined Procedures

A set of procedures are already predefined. Some of them
are generic, i.e. apply to several types of arguments.

Proper procedures:
Procedure Arguments Effect
ASSERT(x) BOOLEAN terminate the process with an err/J, if x is FALSE
ASSERT(x, n) x: BOOLEAN terminate the process with an err/J, if x is FALSE; n is a

n: INTEGER •parameter whose interpretation is lett to the system
HALT(n) n: INTEGER terminate the process with an err/J; n is a parameter

whose interpretation is ieft to the system
INC (v) INTEGER storage v:= v + 1

location
INC(v, x) v: INTEGER storage v:~ v + x

location
x: INTEGER

DEC(v) INTEGER storage v:= v-1
location

DEC(v, x) v: INTEGER storage v:_ v - x
location
x: INTEGER

PASSIVATE(n) n: INTEGER suspend the process for a defined non-negative virtual
time, see A.l 0.1

WRITE(x) INTEGER, REAL, write value to the system output stream
CHARACTER or TEXT

WRITEHEX(x) INTEGER write in hexadecimal fonmat to the system output stream
WRITELINE write a line break to the system output stream

Function procedures:
Procedure
COUNT{J)

LENGTH(x)

Arguments
required interface
designator but without
index
TEXT

Result type Result
INTEGER number of connected required interfaces

but at least the specified minimum number

INTEGER number of characters in x

55 Parts of this section are adopted from the Oberon language report
[Wirth90].

225

TERMINATEDO BOOLEAN all internal selViee processes 01 the
component are terminated and the com-
Donent should be finalised

SQRT(x) REAL REAL square root of x
SIN(x) REAL REAL sine of x
COS(x) REAL REAL cosine of x
TAN (x) REAL REAL tangent 01 x
ARCSIN(x) REAL REAL arcsine of x (1 <- x <-1)
ARCCOS(x) REAL REAL arccosine of x (1 <- X<- 1)
ARCTAN(x) REAL REAL arctanllent 01 x
RANDOM(x, y) x. y: INTEGER INTEGER randcm number uniformly distributed

between x and v (includino them)
MIN(T) T ~ INTEGER or REAL T minimum integer or real number
MAX(T) T ~ INTEGER or REAL T maximum integer or real number

Type conversions:
Procedure Arguments Result type Result
CHARACTER(x) INTEGER CHARACTER character with code x
INTEGER(x) CHARACTER or REAL INTEGER code of character x or,

largest integer not greater than real x;
note that INTEGER(i/j) ~ i DIV j

REAL(x) INTEGER REAL (approXimated) real number represen-
tation 01 x

TEXT(x) CHARACTER TEXT text consisting of the one character x

A.12.2 Predefined Constant

The following constant is predefined:
PI :::: 3.14159265... (* with machine-dependent precision *)

A.12.3 Predefined Variable

The following variable is predefmed:
TIME (* current virtual time, see A.1 0.3 *)

A.12.4 Predefined Attributes

The following attributes are defined for the following
syntactical constructs:
Attribute Syntactical Constructs
EXCLUSIVE statement sequence

expression
SHARED statement sequence

expression
SYNCHRONOUS variable of component

signature

Semantics
exclusive component lock during the execution of the
construct
shared component lock during the execution of the
construct
sub-component in the variable is time-synchronous
with the outer component

A.12.S Special Characters

The language employs the following special character or
character pairs:

I {} ()
: (colon)
- + -

[] "(quotation mark) ,(comma)
. (dot) .. (ellipsis)

* / = # < > <= >=

226

; (semicolon)

A.12.6 Reserved Keywords

The keywords listed below are reserved and can not be
used as identifiers:

ACTIVITY, AND, ANY, ARCCOS, ARCSIN, ARCTAN, ASSERT,
AWAIT, BEGIN, BOOLEAN, BY, CHARACTER, COS,
COMPONENT, CONNECT, CONSTANT, COUNT, DEC,
DELETE, DISCONNECT, DIV, DO, ELSE, ELSIF, EXISTS, END,
EXCLUSIVE, FALSE, FINALLY, FINISH, FOR, FOREACH,
HALT, INC, INTEGER, IF, IMPLEMENTATION, IN, INPUT,
INTERFACE, IS, LENGTH, MAX, MIN, MOD, MOVE, NEW, OF,
OFFERS, OR, OUT, PASSIVATE, PI, PROCEDURE, RANDOM,
REAL, REPEAT, REQUIRES, RETURN, SHARED, SIN, SQRT,
SYNCHRONOUS, TAN, TERMINATED, TEXT, THEN, TIME, TO,
TRUE, UNTIL, VARIABLE, WHILE.

A.I3 Syntax Summary

Program

Component

InterfaceDeclList
InterfaceDecl
Noflnterfaces

Interface

Protocol
ProtocolExpr
ProtocolTerm
ProtocolFactor

MessageDecl
ParameterList
ParamSection

ComponentBody

Declaration

= { Component I Interface }.

= COMPONENT Identifier
[OFFERS InterfaceDeclList]
[REQUIRES InterfaceDeclList] ";"

ComponentBody
END Identifier ";".

= InterfaceDecl {"," InterfaceDecl}.
= Identifier ["[" Noflnterfaces '']''].
= Integer [" .. " (Integer I"·")].

= INTERFACE Identifier ";"
Protocol

END Identifier ";".
= [ProtocolExpr].
= ProtocolTerm { "I" ProtocolTerm }.
= ProtocolFactor { Protocol Factor }.
= MessageDecl
I "[" ProtocolExpr "]"
I "{" ProtocolExpr "}"
I "(" ProtocolExpr ")".
= (IN IOUT} Identifier ["(" ParameterList ")"].
= ParamSection {";" ParamSection}.
= IdentifierList ":" Type.

= { Declaration}
{ Implementation}
[BEGIN StatementSeq]
[ACTIVITY StatementSeq]
[FINALLY StatementSeq].

= Component I Interface IConstantList I

227

ConstantList
Constant
VariableList
VariableSection
Indexed IdentList
Indexedldent
Procedure

ProcParamList
ProcParSection

Implementation

Type
AnylnterfaceList

StatementSeq
StatementList
Statement

Assignment
New
Connect
Disconnect
Send

Receive

Delete
Move
Await
ProcedureCali
Return
If

While

Repeat

For

VariableList I Procedure.
= CONSTANT Constant {Constant}.
= Identifier "=" ConstantExpr ";",
= VARIABLE VariableSection { VariableSection}.
= IndexedldentList ":" Type [AttributeList)";".
= Indexedldent { "," Indexedldent }.
= Identifier ["[" ParameterList '']'').
= PROCEDURE Identifier

["(" [ProcParamList)")" [":" Type))";"
{ Declaration}
[BEGIN StatementSeq)

END Identifier ";".
= ProcParSection { ";" ProcParSection }.
= [VARIABLE) ParamSection.

= IMPLEMENTATION Identifier ";"
{ Declaration}
[BEGIN StatementSeq)

END Identifier ";".

= Identifier IANY ["(" AnylnterfaceList ")").
= [InterfaceDeclList) ["I" InterfaceDeclList).

= [AttributeList) StatementList.
= Statement { ";" Statement}.
= [Assignment I New IConnect I Disconnect

I Send I Receive I Delete I Move
I Await I ProcedureCall IReturn
Ilf I While I Repeat I For I Foreach
I StatementBlock).

= Designator ":=" Expression.
= NEW "(" Designator ["," Identifier)")".
= CONNECT "(" Designator "," Designator ")".
= DISCONNECT "(" Designator ")".
= [Designator)"!" Identifier

["(" ExpressionList ")").
= [Designator)"?" Identifier

["(" DesignatorList ")").
= DELETE "(" Designator ")".
= MOVE "(" Designator "," Designator ")".
= AWAIT "(" Expression ")".
= Identifier ["(" ExpressionList ")").
= RETURN [Expression).
= IF Expression THEN StatementSeq

{ ELSIF Expression THEN StatementSeq)
[ELSE StatementSeq)
END.

= WHILE Expression DO
StatementSeq

END.
= REPEAT

StatementSeq
UNTIL Expression.

= FOR Designator ":=" Expression TO Expression
[BY ConstantExpr) DO

StatementSeq

228

Foreach

StatementBlock

ExpressionList
ConstantExpr
Expression

SimpleExpr
Term
Factor
Operand

ReceiveTest
InputTest
MessagePattern
ExistsTest
FunctionCall

DesignatorList
Designator

AttributeList
IdentifierList
Identifier
Letter
Digit
Number
Integer
HexDigit
Real
ScaleFactor
ConstChar
Text
Character

END.
= FOREACH DesignatorList OF Designator DO

StatementSeq
END.

= BEGIN StatementSeq END.

= Expression {"," Expression}.
= Expression. II statically evaluable
= [AttributeList]

(SimpleExpr
[("=" I "#" I "<" I "<=" I ">" I ">=")] SimpleExpr

I Designator
(OFFERS I REQUIRES) InterfaceDeciList

I Designator IS Type).
= ["+" I "-"]Term { ("+" I "-" I OR) Term }.
= Factor { ("*,, I "f' I DIV I MOD I AND) Factor }.
= Operand I "-" Factor I "(" Expression ")".
= Number I ConstChar IText I Designator I

ReceiveTest IlnputTest I ExistsTest I
FunctionCall.

= [Designator 1"?" MessagePattern.
= IN PUT "(" [Designator","] MessagePattern ")".
= Identifier IANY I FINISH.
= EXISTS "{" Designator ")".
= Identifier "(" [ExpressionList] ")".

= Designator {"," Designator}.
= Identifier
I Identifier "[" ExpressionList "]"
I Designator "(" Designator ")"
I Designator "(" Type ")".

= "{" IdentifierList "}".
= Identifier {"," Identifier}.
= Letter { Letter I Digit}.
= IIAn

•• liZ" I IIa" .. "Z".

= "0" .. 11 9".
= Integer I Real.
= Digit { Digit} I Digit { HexDigit} "H".
= Digit I "A" .. "F".
= Digit { Digit} "." { Digit} [ScaleFactor].
= "E" ["+" 1"-" 1Digit { Digit}.
= ",,,, Character 111111 I Digit { HexDigit } "X".
= """ { Character} """.
= any character except quotation mark.

229

AppendixB

User Commands

The following user commands are supported by the runtime
system to manage and use components in the system scope.
The symbols in italics denote arguments that are defined by
the user.

NEW(name, template)

CONNECT(interlace(from) , to)
CONNECT(interlace[/](from, to)

DISCONNECT(interlace(name))
DISCONNECT(interlace[i)(name))

DELETE(name)

interlace(name)! message
interlace(name)! message(arg1, ...)

interlace(name)? message

create a new component with a unique
name from a component template

connect a required interface of a com­
ponent to the matching offered inter­
face of another component; an index is
specified if the component requires
multiple instances of that interface

disconnect the required interface of a
component; an index is specified if the
component requires mu Itip Ie instances
of that interface

delete a component

send a message with possible
arguments to an offered interface of a
component

try to receive a message (with its
arguments) from an offered interface
of a component

Example:
NEW(I, PublicLibrary); NEW(c, LibraryCustomer)
CONNECT(Library[1)(c), I)
Customer(c)! Interestedln(123456)

DELETE(c); DELETE(I)

The predefined component with name SYSTEM represents
the system itself and offers the following interfaces:

230

INTERFACE FileSystem;
(IN New(name: TEXT) liN Open(name: TEXT))
(

OUT Done
{

IN SetPosition(position: INTEGER)
liN GetPosition OUT Position(pos: INTEGER)
liN GetLength OUT Length(len: INTEGER)
I(IN ReadByte I IN ReadLine)

(OUT Byte(x: CHARACTER) lOUT Line(x: TEXT) lOUT EOF)
liN Write(x: CHARACTER) liN WriteText(x: TEXT)
liN Update

}
IN Close

I
OUT Failed

)
END FileSystem;

INTERFACE SystemTime;
IN GetSystemTime OUT SystemTime(ticks: INTEGER)

END SystemTime;

INTERFACE GraphicView;
{IN Clear
liN GetSize OUT Size(width, height, bgColor: INTEGER)
liN Pixel(x, y, color: INTEGER)
liN Font(x, y: INTEGER; char: CHARACTER; color: INTEGER)
liN Fill (x, y, w, h, color: INTEGER)
liN SetLayer(level: INTEGER) liN DrawLayers}

END GraphicView;

In addition, the following user commands allow inspecting
the system state:

SHOW COMPONENTS

SHOW RESOURCES

SHOW VOLUMES

SHOW FILES

MOUNT IDEX#y

UNMOUNT IDEX#y

list all components in the system
scope
show an overview of the occupied and
free system resources

list all loaded file system volumes

list all files from all loaded volumes

load an Oberon file system volume
from a disk partition

unload a file system volume

For evaluation purposes, the system supports different
kinds of schedulers. The default is the smart scheduler
which is described in Section 5.2.9.

231

SET MODE SMART

SET MODE SERIAL

SET MODE PARALLEL

selective scheduling of independent
processes on different processors

scheduling all processes on the same
processor

scheduling processes by using all
processors

232

Appendix C

Deadlock Exclusion

This appendix shows how deadlocks can be abandoned in
the component language by following three simple pro­
gramming rules. However, we regard these rules as too
restrictive for general scenarios, such that we do not en­
force them in the programming language. With the sub­
sequent approach, we merely exclude deadlocks that could
be provoked by the monitor locks of components. Of
course, processes may also wait perpetually if they are
blocked by an AWAIT-condition that will be never satisfied
in future. However, processes do then not really hold a
monitor lock, such that we do not consider such situations
in this deadlock exclusion scheme.

C.I Rules

The specific rules for deadlock exclusion are:

Rules 1: Components can only be connected to
acyclic networks.

Rules 2: A process can only have one open client­
side communication at the same time.

Rules 3: During a client-side communication, a
process must not acquire a monitor lock.

The first rule can be easily governed by requiring sub-com­
ponents to only be acyclically connected according to the
linear declaration order of the variables. A required inter­
face of a sub-component can only be connected to an
offered interface of another component, if the second com­
ponent is declared in a variable after that of the first com-

233

ponent. Interface redirection from and to external interfaces
of the super-component can be unrestrictedly performed.
For components in the same collection, the relation of order
between the index values is decisive. (If the index consists
of a list of multiple values, the first values are more
signifIcant.) Rule 1 can be statically verified, unless sub­
components of the same collection are connected. In the
latter, a runtime check is needed.

Example:
VARIABLE

house[postaIAddress: TEXT]: 8tandardHouse;
powerPlant: HydroelectricPowerPlant;
river[number: INTEGER]: River;

BEGIN
CONNECT(Electricity(house["12 Market Street"]), powerPlant);
CONNECT(Water(house[" 12 Market Street"])), river[1]);
CONNECT(Water(powerPlant), river[1])

The second rule is more restrictive and requires that a
process, which communicates as a client via an interface,
has to complete the EBNF-communication protocol, before
it can initiate another client-side communication via the
same or a different interface. However, a process may act
as a communication server and as a communication client
at the same time. If a communication protocol is finished,
processes are also allowed to restart a communication via
the same interface at a later time. A process is therefore
required to only interact with the same interface between a
potential first and definitive final message in a statement
block. This may be dynamically checked.

Example:
INTERFACE Library;

IN BorrowBook(isbn: INTEGER)
(

OUT Result(b: ANY(Book))
IN ReturnBook(b: ANY(Book))

I
OUT Unavailable

)
END Library;

234

COMPONENT Customer OFFERS Person REQUIRES Library;
IMPLEMENTATION Person;
VARIABLE isbn: INTEGER; b: ANY(Book);
BEGIN

?InterestedIn(isbn);
(* begin of client-side communication *)
Library!BorrowBook(isbn);
IF Library?Result THEN

Library?Result(b); Library!ReturnBook(b)
ELSE Library?Unavailable
END
(* end of client-side communication *)

END Person;
END Customer;

The third rule prohibits an exclusive or shared monitor lock
between a potential first and definitive final message of a
client-side communication. As mentioned in Section 4.6.2,
monitor locks may not be nested within a sequential execu­
tion.

Example:
IMPLEMENTATION Person;
VARIABLE isbn: INTEGER; b: ANY(Book);
BEGIN (* EXCLUSIVE/SHARED attribute is here permitted *)

?Interestedln(isbn);
Library!BorrowBook(isbn);
(* an EXCLUSIVE/SHARED block is here not allowed *)
IF Library?Result THEN
Library?Result(b); Library! ReturnBook(b)

ELSE Library?Unavailable
END

END Person;

C.2 Correctness Proof

First, it should be noted that the abovementioned linear
order for acyclic component connections, implies a global
ordering of components. Each component has an associated
local number, which is its position in the linearly ordered
sub-components of its directly surrounding component. As
a consequence, a component may also have a global
number (x], X2, .., Xn-], xn), where Xn is the local number of

235

the component, Xn-l the local number of its direct super­
component, Xn-2 the local number of its next hierarchically
containing super-component, and so on. Global numbers
are ordered as follows: (Xl, "', xn) < (yI, ..., Yn), if and only
if, Xi <= Yi for i = l ..n-l and Xn < Yn'

For a proof by contradiction, we assume that there
would be a deadlock in a program. The deadlock situation
always entails a cyclic lock dependency among com­
ponents or processes. The lock dependencies among com­
ponents and processes may be represented in a directed
graph, by using the following notation:

Nodes;

D component 0 process

Edges;

&----0 component C is locked by process P (shared or exclusive)

&-0 process P waits for lock of component C

~ process P waits for message of process Q

It can be seen that a deadlock always involves a cycle
in the directed graph. If there would be deadlock without
such a cycle, there would be a node involved in the dead­
lock (a component or a process) without an outgoing edge
(as the graph is finite). This node can either run (in the case
of a process) or the corresponding lock on a component
may be acquired (in the case of a component).

It is prevented by the EBNF-communication protocol
that two processes mutually wait for a message. It is also
impossible that only processes cyclically wait for
messages, as illustrated below. Since each process can only
serve at most one other process at the same time, it can be
said without loss of generality that PI is a client of P2, P2 a
client of P3, and so on, until Pn is a client of Pl. However,
the processes would then belong to components that are
cyclically connected, which contradicts Rule 1.

236

r
@

..... ..

Therefore, a deadlock scenario must also involve com­
ponents and can be represented as the following graph:

In a deadlock scenario, two subsequent components in the
cycle are indirectly dependent by a series of process nodes,
which are connected with equally directed edges:

...~

As a process can only perform one client interaction at the
same time (Rule 2) and may serve at most one other
process (due to client-individual communication), there are
only two possible relations between processes:

1. PI is the server of P2, P2 the server of P3 and so on.
2. P j is the client of P2, P2 the client of P3 and so on.

The first possibility can be excluded, because Pn would try
to acquire a lock during a client interaction (Rule 3). Using
Rule 1, the global number of A is less than that of B, since
a process in a component can only interact as a client with
components of a higher global number. As a consequence,
the components may not be cyclically dependent and a
deadlock can not occur.

237

AppendixD

Digital Material

Together with this thesis, the following material is provided
on a compact disk medium.

• The binary code of the runtime system and the
compiler (induding installation instructions)

• The source code of the runtime system and the
compiler

• The complete language report

• The documentation of the memory model used in
the runtime system

• All the programs used in the benchmarks

• The traffic simulation programs in source code
with test files (Official data has to be requested at
the Swiss Federal Department of the Environ­
ment, Transport, Energy and Communications
[UVEK].)

238

Bibliography

[ABOl] C. Artho and A. Biere. Applying Static Analysis to
Large-Scale, Multi-Threaded Java Programs. Proc. of
the Australian Conf. on Software Engineering
(ASWEC), August 2001.

[AC04] J. Aldrich and C. Chambers. Ownership Domains:
Separating Aliasing Policy from Mechanism. In Proc.
of the European Conference on Object-Oriented Pro­
gramming (ECOOP), June 2004.

[ACN02] J. Aldrich, C. Chambers, D. Notkin. ArchJava: Con­
necting Software Architecture to Implementation. In
Proc. of the lntl. Conference on Software Engineering
(ICSE), May 2002.

[AEL88] A. W. Appel, J. R. Ellis, and K. Li. Real-Time Con­
current Collection on Stack Multiprocessors. In Proc.
of the Conf. on Programming Language Design and
Implementation (PLDI), June 1988. ACM SIGPLAN
Notices, 23(7):11-20, July 1988.

[Agha86] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, 1986.

[A1l97] R. Allen. A Formal Approach to Software Architec­
ture. PhD thesis, School of Computer Science, Carne­
gie Mellon University, 1997.

[Alm97] P. S. Almeida. Balloon Types: Controlling Sharing of
State in Data Types. In Proc. of the European Confer­
ence on Object-Oriented Programming (ECOOP),
June 1997.

[AOS06] The Active Oberon Language and the Bluebottle Sys­
tem. Ern Zurich, http://www.bluebottle.ethz.ch. 2004.

[Baker78] Jr. H. G. Baker. List Processing in Real-Time on a
Serial Computer. Communications of the ACM, 21(4):
280-294, April 1978.

239

[Baker92] Jr. H. G. Baker. The Treadmill: Real-Time Garbage
Collection without Motion Sickness. ACM SIGPLAN
Notices 27(3):66-70, March 1992.

[Barnes80]J. Barnes. An Overview of Ada. Software - Practice
and Experience, 10: 851-887, 1980.

[Barnes95]J. Barnes. Programming in Ada95. Addison-Wesley,
1995.

[BC90] G. Bracha and W. Cook. Mixin-Based Inheritance. In
Proc. of the Inti. Conf. on Object-Oriented Systems,
Languages, and Applications (OOPSLA), October
1990.

[BCF04] N. Benton, L. Cardelli and C. Fournet. Modern
Concurrency Abstractions for C#. ACM Transactions
on Programming Languages and Systems (TOPLAS)
26(5): 269-804, September 2004.

[BCR03] D. F. Bacon, P. Cheng, and V. T. Rajan. A Real-Time
Garbage Collector with Low Overhead and Consistent
Utilization. In Proc. of the Symp. on Principles of Pro­
gramming Languages (POPL), January 2003.

[BE+94] P. Bims, M. Englehart, M. Jackson, S. Vestal.
Domain-Specific Software Architectures for Guidance,
Navigation and Control. International Journal of
Software Engineering and Knowledge Engineering,
6(2), January 1994.

[BH72] P. Brinch Hansen. Structured Multiprogramming.
Communications of the ACM, 15(7): 574-578, July
1972.

[BH73] P. Erinch Hansen. Operating System Principles,
Section 7.2 Class Concept, Prentice-Hall, Englewood
Cliffs, NJ, 226-232, July 1973. Reprinted in [BH02],
Shared Classes, 265-271.

[BH75] P. Brinch Hansen. The Programming Language
Concurrent Pascal. IEEE Transactions on Software
Engineering, 1(2):199-207, 1975.

[BH02] P. Brinch Hansen, Ed.. The Origin of Concurrent Pro­
gramming: From Semaphores to Remote Procedure
Calls. Springer Verlag, 2002.

240

[BIaser06] L. Blaser. A Component Language for Structured
Parallel Programming. In Proc. of the Joint Modular
Languages Conference (JMLC), September 2006.
Lecture Notes in Computer Science (LNCS), Vol.
4228, pp. 230-250, Springer Verlag, 2006.

[BLR02] C. Boyapati, R. Lee, and M. Rinard. Ownership Types
for Safe Programming: Preventing Data Races and
Deadlocks. In Proc. of the Inti. Conf. on Object
Oriented Programming Systems, Languages, and Ap­
plications (OOPSLA), November 2002.

[BROl] C. Boyapati and M. Rinard. A Parameterized Type
System for Race-Free Java Programs. In Proc. of the
Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), October
2001.

[BSB+03] C. Boyapati, A. Salcianu, Jr. W. Beebee, and M.
Rinard. Ownership Types for Safe Region-Based
Memory Management in Real-Time Java. In Proc. of
the Conf. on Programming Language Design and Im­
plementation (PLDI), June 2003.

[CBOO] P. Cheng and G. E. Blelloch. A Parallel, Real-Time
Garbage Collector. In Proc. of the Conf. on Program­
ming Language Design and Implementation (PLDI),
June 2001. ACM SIGPLAN Notices, 36(5): 125-136,
May 2001.

[COM06] Microsoft COM. http://www.microsoft.com/com.
2006.

[CPN98] D. G. Clarke, J. M. Potter, and 1. Noble. Ownership
Types for Flexible Alias Protection. In Proc. of the
Inti. Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), October
1998.

[CM81] K. M. Chandy and J. Misra. Asynchronous Distributed
Simulation via a Sequence of Parallel Computations.
Communications of the ACM, 24(11):198-206, April
1981.

241

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice.
LUSTRE: A Declarative Language for Programming
Synchronous Systems, In Proc. of the Symp. on Prin­
ciples of Programming Languages (POPL), January
1987.

[CR93] A. Colmerauer and P. RousseL The Birth of Prolog. In
Second History of Programming Languages, ACM
SIGPLAN Notices, 37-52, March 1993.

[CS06] C# Language Specification. ISOIJEC Standard 23270,
2003.

[Dij65] E. W. Dijkstra. Cooperating Sequential Processes.
Technological University, Eindhoven, Netherland,;;,
September 1965. Reprinted in [BH02], 65-138.

[DN66] O. - 1. Dahl and K. Nygaard. SIMULA - An ALOGL­
based Simulation Language. Communications of the
ACM, 9(9):671-678, 1966.

[DMN68] O.-J. Dahl, B. Myhrhaug, K. Nygaard. SIMULA 67
Common Base Language. Norwegian Computing
Center 1968.

[EA03] D. Engler and K. Ashcraft. Racer X: Effective, Static
Detection of Race Conditions and Deadlocks. In Proc.
of the Symposium on Operating System Principles
(SOSP), October 2003.

[FA+06] M. Hihndrich, M. Aiken, C. Hawblitzel, et al. Lan­
guage Support for Fast and Reliable Message-Based
Communication in Singularity OS. In Proc. of Euro­
Sys 2006, April 2006.

[Fried07] F. Friedrich. WinAOS. http://winaos.de. Last accessed
2007.

[GA094] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
Style in Architectural Design Environments. In Pmc.
of the Symposium on the Foundations of Software
Engineering (FSE), December 1994.

[GG04] R. Giintensperger and J. Gutknecht. Active C#. In
Proc. of the Inti. Workshop on .NET Technologies,
May 2004.

242

[GH+95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Soft­
ware. Addison-Wesley, 1995.

[GL+03] D. Gay, P. Levis, R. von Behren et al. The nesC
Language: A Holistic Approach to Networked Embed­
ded Systems. In Proc. of the Conf. on Programming
Language Design and Implementation, June 2003.
ACM SIGPLAN Notices, 38(5): 1-11, May 2003.

[GMW97] D. Garlan, R. Monroe, and D.Wile. Acme: An Archi­
tecture Description Interchange Language. In Proc. of
the Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON), November 1997.

[Gut97] J. Gutknecht. Do the Fish Really Need Remote Con­
trol? A Proposal for Self-Active Objects in Oberon. In
Proc. of the Joint Modular Language Conference
(JMLC), March 1997. Lecture Notes in Computer
Science (LNCS), Vol. 1204, Springer Verlag, 1997.

[GJS+OO] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, Second Edition, Addison
Wesley, 2000.

[Gough02] J. Gough. Compiling for the .NET Common Language
Runtime (CLR). Prentice Hall, 2002.

[GZ05] J. Gutknecht and E. Zueff. Zonnon Language Report.
ETH Zurich, http://www.zonnon.ethz.ch. 2005.

[HL+05] G. Hunt, J. Larus, M. Abadi et al. An Overview of the
Singularity Project. Technical Report MSR-TR-2005­
135, Microsoft Research, October 2005.

[Hoare71] C. A. R. Hoare. Towards a Theory of Parallel
Programming. In Operating Systems Techniques,
Proc. of a Seminar at Queen's University, Belfast,
Northern Ireland, August-September 1971. C. A. R.
Hoare and R. H. Perrott, Eds. Academic Press, New
York (1972),61-71. Reprinted in [BH02], 231-244.

[Hoare73] C. A. R. Hoare. Hints on Programming Language
Design. Stanford Artificial Intelligence Laboratory
Memo AIM-224 or STAN-CS-73-403, Stanford
University, Stanford, California, December 1973.

243

[Hoare74] C. A. R. Hoare. Monitors: An Operating System
Structuring Concept. Communications of the ACM,
17(10):549-557, October 1974.

[Hoare78] C. A. R. Hoare. Communicating Sequential Processes.
Communications of the ACM, 21(8):666-677, August
1978.

[Hogg91] J. Hogg. Islands: Aliasing Protection in Object-Ori­
ented Languages. In Proc. of the IntI. Conf. on Object­
Oriented Programming Systems, Languages, and
Applications (OOPSLA), October 1991.

[IA32] Intel Corporation. IA32 Intel® Architecture Software
Developer's Manual, Volumes 1-4, 2004.

[IW+88] D. Ingalls, S. Wallace et al. Fabrik: A Visual Program­
ming Environment. In Proc. of the IntI. Conf. on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), September 1988.

[PJ02] S. Peyton Jones (00.). Ha"kell 98 Language and
Libraries: The Revised Report, http://www.haskell.
org, February 2002.

[JB98] JavaBeans Component Architecture Specification,
http://java.sun.com/products/javabeans, 1998.

[JL03] R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Addi­
son-Wesley, 2003.

[Keller06] R. Keller. Improved Stack Management in the Active
Oberon Kernel. Master Thesis. ETH Ziirich, 2006.

[LabView] Lab View User Manual. National Instruments, Austin,
TX.

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the
ACM, 21(7):558-565, July 1978.

[LK+95] D. C. Luckham, J. J. Kenney, L. M. Augustin et al.
Specification and Analysis of System-Architecture
Using Rapide. IEEE Transactions on Software Engi­
neering. 21(4): 336-355, April 1995.

244

[LS05] Y. D. Liu and S. F. Smith. Interaction-Based Program­
ming with Classages. In Proc. of the Inti. Conf. on
Object~Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 2005. ACM
SIGPLAN Notices, 40(10): 191-209, October 2005.

[Matsim] MATSIM. Multi-Agent Traffic Simulation.
http://www.matsim.org. Last accessed March 2007.

[Meyer97] B. Meyer. Object Oriented Software Construction.
Second Edition, Prentice Hall, 1997.

[MD+95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
Proc. of the European Software Engineering Confer­
ence, September 1995.

[MK96] J. Magee and J. Kramer. Dynamic Structure in Soft­
ware Architectures. In Proc. of the Symposium on
Foundations of Software Engineering (FSE), October
1996.

[MMN93] O. L. Madsen, B. M011er-Pedersen, K. Nygaard.
Object-Oriented Programming in the Beta Program­
ming Language. Addison Wesley, 1993.

[MT+97] R. Milner, M. Tofte, R. W. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
1997.

[MSA+85] J.R. McGraw, S.K. Skedzielewski, S.J. Allan et aI.
SISAL: Streams and Iteration in a Single Assignment
Language: Reference Manual Version 1.2. Manual M­
146, Lawrence Livermore National Laboratory, Liv­
ermore, CA, 1985.

[McIl68] M. D. McIlroy. Mass produced software components.
In Proc. of NATO Software Engineering Conference,
P. Naur and B. Randell (eds.), 1:138--150, October
1968.

[Med96] N. Medvidovic. ADLs and Dynamic Architecture
Changes. In Joint Proc. of the SIGSOFT'96 Work­
shops, October 1996.

[Meyer97] B. Meyer. Object~Oriented Software Construction,
Second Edition. Prentice Hall, 1997.

245

[MHOO] R. Monson-Haefel. Enterprise Java Beans, Second
Edition. a 'Reily, 2000.

[MP01] P. Millier and A. Poetzsch-Heffter. A Type System for
Alias and Dependency Control. Technical Report 279,
FernuniversiHit Hagen, 2001.

[MQR95] M. Moriconi, X. Qian, and R. A. Riemenschneider.
Correct Architecture Refinement. IEEE Transactions
on Software Engineering, 21(4):356-372, April 1995.

[MRT99] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
Language Environment for Architecture-Based Soft­
ware Development and Evolution. In Proc. of the Inti.
Conference on Software Engineering (ICSE), May
1999.

[MSB05] B. Middha, M. Simpson, and R. Barua. MTSS: Multi
Task Stack Sharing for Embedded Systems. In Proc. of
the Inti. Conf. on Compilers, Architectures and Syn­
thesis for Embedded Systems (CASES), September
2005.

[Mu102] P. J. Muller. The Active Object System - Design and
Multiprocessor Implementation. PhD Thesis, Diss.
ETH No. 14755, ETH Zurich, 2002.

[NET06] The Microsoft .NET Framework. http://msdn.micro­
soft.comlnetframework,2006.

[Nage105] K. Nagel. Multi-Agent Transportation Simulation.
http://www.vsp.tu-berlin.de/publications.
January 2005.

[Naur60] P. Naur (ed.), Revised Report on the Algorithmic Lan­
guage ALGOL 60, Communications of the ACM, Vol.
3:299-316, 1960. Communications of the ACM, Vol.
6:1-17, 1963.

[N093] S. Nettles and J. O'Toole. Real-Time Replication Gar­
bage Collection. In Proc. of the Conf. on Programming
Language Design and Implementation (PLDI), June
1993. ACM SIGPLAN Notices, 28(6): 217-226, June
1993.

246

[NVP98] J. Noble, J. Vitek, and J. Potter. Flexible Alias Protec­
tion. In Proc. of the European Conference on Object­
Oriented Programming (ECOOP), July 1998.

[Occ88] Imnos Ltd. Occam 2 Reference Manual. Prentice-Hall,
1988.

[OMG98] Object Management Group. The Common Object
Request Broker: Architecture and Specification, Revi­
sion 2.3.492, December 1998.

[OMG04] Object Management Group. The Unified Modeling
Language, UML 2.0 Superstructure Specification,
http://www.uml.org, October 2004.

[OMT98] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architec­
ture-Based Runtime Software Evolution. In Proc. of
the International Conference on Software Engineering,
April 1998.

[Parnas72] D. L. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Communications
of the ACM, 15(12): 1053-1057, 1972.

[ProI95] Prolog. ISO/IEC Standard 13211-1, 1995.

[RichOO] J. Richter. Garbage Collection: Automatic Memory
Management in the Microsoft .NET Framework.
MSDN Magazine, November 2000.

[RR02] S. K. Rajamani and J. Rehof. Conformance Checking
for Models of Asynchronous Message Passing Soft­
ware. In Proc. of Conf. on Computer Aided Verifica­
tion (CAV), July 2002. Lecture Notes in Computer
Science (LNCS), VoL 2404, Springer Verlag, 2002.

[SD+95] M. Shaw, R. DeLine, D. V. Klein et al. Abstractions
for Software Architecture and Tools to Support Them.
IEEE Transactions on Software Engineering, 21 (4):
314-335, April 1995.

[SD+03] N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. Black.
Traits: Composable Units of Behaviour. In Proc. of the
European Conference on Object-Oriented Program­
ming (ECOOP), July 2003.

[Strous98] B. Stroustrop. C++ Programming Language, Third
Edition, Addison Wesley, 1998.

247

[ST98] Programming Language Smalltalk, ANSJJINCITS
Standard No. 319-1998, 1998.

[Szy98] C. Szyperski. Component Software, Beyond Object­
Oriented Programming. Addison-Wesley, 1998.

[Reali04] P. Reali, Active Oberon Language Report, Em Zu-
rich, http://www.bluebottle.ethz.chllanguagereport.
2004.

[US87] D. Ungar and R. B. Smith. Self: The Power of
Simplicity. In Proc. of the IntI. Conf. on Object-Ori­
ented Programming Systems, Languages, and Appli­
cations (OOPSLA), October 1987. ACM SIGPLAN
Notices 22(12): 227 - 242, December 1987.

[UVEK] Schweizerische Eidgenossenschaft. Daten aus dem
nationalen Verkehrsmodell. Bundesamt fUr Raum­
entwicklung (ARE) im Eidgenossischen Departement
fiir Umwelt, Verkehr, Energie und Kommunikation.
3003 Bern.

[VC+03] R. von Behren, 1. Condit, F. Zhou et al. Capriccio:
Scalable Threads for Internet Services. In Proc. of the
Symp. on Architectural Support for Programming
Languages and Operating System Principles (SOSP),
October 2003.

[VHOO] IEEE Standard VHDL Language Reference Manual.
IEEE Standard 1076, 2000.

[VG03] C. von Praun and T. R. Gross. Static Conflict Analysis
for Multi-Threaded Object-Oriented Programs. In
Proc. of the Conf. on Programming Language Design
and Implementation (PLDI), June 2003.

[VP04] C. von Praun. Detecting Synchronization Defects in
Multi-Threaded Object-Oriented Programs. PhD The­
sis, Diss. ETH No. 15524, ETH Zurich, 2004.

[Wad92] P. Wadler. The Essence of Functional Programming.
In Proc. of the Symp. on Principles of Programming
Languages (POPL), January 1992.

[Welch04] P. H. Welch. The JCSP Home Page. University of
Kent, http://www.cs.ukc.ac.ukiprojects/ofa/jcsp. 2004.

248

for modular
Practice and

[WD94] K.-F. Wong and Benoit Dagevill. Supporting Thou­
sands of Threads Using a Hybrid Stack Sharing
Scheme. In Proc. of the ACM Symposium on Applied
Computing, March 1994.

[WG89] N. Wirth and J. Gutknecht. The Oberon System.
Software - Practice and Experience, 19(9):857-894,
September 1989.

[WiI88] A. Williams. Deadling with the Unknown - or - Type
Safety in a Dynamically Extensible Class Library.
Draft, Microsoft Research, http://research.rnicorosoft.
corn/comapps/docslUnknown.doc, 1988.

[Wi190] A. Williams. On Inheritance: What It Means and How
to Use It. Draft, Microsoft Research, http://research.
microsoft.corn/comapps/dicsllnherit.doc, 1990.

[Wirth70] N. Wirth. The Programming Language Pascal,
Technical Report 1, Fachgruppe Computer-Wissen­
schaften, ETH, 1970. Acta Informatica, 1:35-63, 1971.

[Wirth77a] N. Wirth. Modu1a: A language
multiprogramming. Software
Experience, 7(1):3-35, January 1977.

[Wirth77b]N. Wirth. What Can We Do About the Unnecessary
Diversity of Notation for Syntactic Definitions?
Communications of the ACM, 20(11):822-823,
November 1977.

[Wirth82] N. Wirth. Programming in Modula-2. Springer Verlag,
1982.

[Wirth90] N. Wirth. The Oberon Language Report. http://www.
oberon.ethz.ch, 1990.

[Wirth88] N. Wirth. The Programming Language Oberon.
Software - Practice and Experience, 18(7):671-690,
July 1988.

249

Curriculum Vitae

Luc Blaser

3 October 1979

1991 -1999

Since 1999

1999 - 2004

2004-2007

Born in Luxembourg

Gymnasium Kantonsschule Solothum,
Eidg. MaturWit Typus B (Latin)

Self-Employed Software Engineer, LBC
Informatik, Zurich

Dip!. Informatik-Ing. ETH mit Auszeich­
nung, MSc. in Computer Science, ETH
Zurich

Research and Teaching Assistant,
Department of Computer Science, ETH
Zurich

250

