
COMPOSITA: A Study in Runtime
Architectures for Massively Parallel Systems

Luc Bläser1 and Jürg Gutknecht2

1 University of Applied Sciences Rapperswil
Institute for Software
lblaeser@hsr.ch

2 ETH Zürich, Switzerland
Native Systems Group
gutknecht@inf.ethz.ch

Abstract. COMPOSITA is an experimental operating system optimized
for effective multi-processing and memory management. Based on new
software technology, notably including micro-stacks and software-controlled
preemption, the system supports millions of concurrent light-weight pro-
cesses. Thanks to hierarchical component structures, no garbage col-
lection is used for the management of dynamic memory. Experimental
evaluations have shown that, under the governance of COMPOSITA,
massively concurrent programs perform and scale considerably better
than under traditional operating systems.

1 Introduction

A comparison of today’s most popular operating systems, notably Windows,
Linux,MacOSX etc. shows a striking principal resemblance of their architectures.
This is beyond sheer coincidence because all of these systems share the same
genetic footprint: the UNIX systems of the 1960s and 1970s. While the success
of these UNIX derivatives is undeniably remarkable, their efficiency factor on
modern computer systems cannot possibly be close to optimal, as their genes
in essence favor a totally different scenario of usage: a central system serving a
large number of terminal users in time-sharing mode (or a miniaturized version
hereof).

Ever more challenging requirements like parallelism across all granularities,
highly concurrent data structures and seamlessly integrated real-time applica-
tions exert additional pressure on system architects towards rethinking the entire
software stack of a modern computer system from the ground up. We decided
to take up this challenge in the concrete form of building an super-efficient im-
plementation of a runtime environment for a highly parallel programming lan-
guage on a state-of-the-art multicore machine. CL became the language of our
choice, an experimental component-oriented language that we developed in a
previous project [4]. CL embodies a model of fine-granular concurrency, message
communication and hierarchical composition. The result of our endeavor is an
ultra-compact operating system called COMPOSITA. It is targeted at massively
parallel applications and exhibits a variety of innovative features, among them

– Fine-grained call-stacks (micro-stacks) permitting millions of concurrent
light-weight processes to coexist at any time

– Super-fast context switches, equally efficient as procedure calls
– Software-instrumented checkpoints as a replacement for expensive pre-

emptive context switches
– Ultra-compact process backups exploiting context intelligence of the

compiler
– Memory management and recycling based on hierarchical compositions

instead of garbage collection

Our decision of developing a new and self-contained solution from the ground
up (in contrast to fixing and extending an existing system) allowed us to con-
centrate on the essentials (thereby sacrificing some ”bells and whistles”) and to
keep it compact and simple. The research was primarily meant to provide an
experimental ground for exploring new models and much less to give a definitive
answer on how generic operating systems should be built in the future.

In the following, we shall explain the design and the detailed implementation
of the COMPOSITA operating system. Section 2 gives an overview of its ar-
chitecture, including the underlying component-oriented programming language
CL. Section 3 focuses on the management of processes and memory. Section 4
reports on some experimental measurements. Section 5 discusses related work
and Section 6 finally draws conclusions.

2 Architecture

COMPOSITA runs on Intel PC machines, has a size of ca. 250 KB and boots
up in about a second. It currently includes a limited set of device drivers, no-
tably comprising IDE disk, keyboard and graphics card. Both the system and
the applications present themselves in the form of a network of components in-
terconnected via interfaces (Figure 1).

component runtime

system component

micro kernel

application components interface

Fig. 1. System architecture

2.1 Component Structures

The component architecture is based on the following mechanisms and principles:

– Composites. Each component may hierarchically contain any number of
sub-components.

– Interfaces. Interfaces specify communication ports. Each component po-
tentially features two kinds of interfaces: offered interfaces and required in-
terfaces.

– Connections. If compatible, a required interface of one component can be
connected with an offered interface of another component, where compati-
bility means that the interfaces have the same name and reside in the same
surrounding composite.

– Delegation. A component can delegate an offered interface of its own to an
offered interface of one of its sub-components. And analogously for required
interfaces. In both cases the interface names are required to match.

Figure 2 depicts an exemplary composite called FileConverter, where the
offered/ required interfaces are represented as lollipops/ forks respectively. The
wiring comprises connecting the required interface Reader of the Transformer

with the offered interface Reader of the Parser and delegating the offered in-
terface ConversionControl to the offered interface of the Transformer.

FileConverter

Transformer

Parser

Generator

File-
System

Conversion-
Control

Writer

Reader

File-
System

Conversion-
Control

Fig. 2. Exemplary component structure

Components are entirely managed by their container (surrounding compo-
nent), i.e. only an outer component can create, connect and delete inner com-
ponents. All other kinds of interactions necessarily involve communication (via
interfaces).

2.2 Concurrency Model

Concurrency in CL interoperates with the compositional structure in the follow-
ing way:

– Processes and internal synchronization. A component typically runs
a number of concurrent processes inside of its scope, where each process
is allowed to access the component’s (shared) memory. For the purpose of
synchronization both exclusive locks and shared locks are provided, as well
as a generic wait (Boolean condition) operation [11].

– Communication. Interfaces allow bidirectional communication. The mes-
sage format as well as the protocol supported by a certain interface is spec-
ified in terms of a formal grammar bound to the respective interface. Mes-
sages may include numbers, strings, etc. but also components (transported
from sender to receiver). Communications between each pair of connected
components run separately and in parallel.

3 Operating System

The COMPOSITA system supports dynamic loading of components. It presents
itself as a pre-existing component loaded and started after system boot up. It
makes available system services and device drivers to application components via
interfaces and the communication mechanism discussed earlier. In the following
sections we explain the implementation of the framework behind the scenes of
these concepts in relevant detail.

3.1 Process Management

As our system is aimed at accommodating a very large number of concurrent
processes, the (footprint) size of individual processes is an important factor.
Therefore, we employ special care to minimize a) the stack size and b) the
backup space needed (after context switch) for each individual process.

Process Stacks Unlike in many other operating systems, process stacks are not
implemented as contiguous pre-allocated memory blocks of a certain (often gen-
erously guessed) maximum size in some virtual address domain in COMPOSITA
but as a linear list of heap blocks in real memory, with the immediate benefit
that stacks can dynamically grow or shrink, see Figure 3. At each procedure call
a runtime check is instrumented to determine whether sufficient stack space is
still present. If not, a new stack block of a precalculated size (by the compiler)
is allocated, and the stack grows correspondingly. When the procedure later re-
turns, the extra stack block is deallocated and returned to the heap. The size of
a process’ initial stack block is also determined by the compiler.

It is worth noting that CL does not require frequent dynamic stack extensions
as it uses communication-based component interactions in place of method calls
in all but local cases. As an additional precaution interrupts run in privileged
mode, using a separate, preallocated kernel stack.

Context Switches The efficiency of context switches is a decisive measure
for the performance of any highly parallel system. A synchronous context switch
occurs whenever a command of type wait/suspend is to be executed. As our kernel
does not run in a separate protection ring, no (expensive) software interrupt is
needed to handle this case and an ordinary procedural kernel call (prolog and
epilog operating on different stacks though) does the job. Only three registers

locals

locals

param

 ESP

EBP

param

callee state

locals

EBP

ESP

param

stack extension

locals

param

EBP

ESP

param

ESP

EBP
locals

param

caller state

stack reduction

Fig. 3. Stack extension and reduction

must be saved and restored namely the program counter, the stack pointer and
the frame pointer.

Asynchronous context switches are indispensable with runtime strategies em-
ploying preemptive process scheduling, such as for example preemptive priority
scheduling or processor-sharing based on the allocation of time-slices. As asyn-
chronous context switches are uncooperative, they tend to be highly expensive
both in terms of time and space (request for saving the entirety of registers
including FPU, MMX, SSE2). Therefore, we were looking for an alternative
and more efficient solution that allows COMPOSITA to mimic preemption in a
slightly weaker form. Rather than letting hardware interrupts govern the context
switch, we are using an instrumented inline approach. More concretely, the CL
compiler injects checks for pending preemption requests directly into the machine
code at suitable locations, where suitable means that the runtime can guarantee
at least one check within each time-interval of a desired length. Furthermore,
the compiler can quite easily optimize the locations in a way to minimize the
number of registers to be saved when the context switch actually occurs, which
substantially contributes to compact sizes of process backups.

According to our heuristics, the compiler injects a check for preemption re-
quests (1) in each loop body, (2) in each procedure entry, and (3) after a state-
ment sequence of a maximum (worst-case) runtime. The current implementation
of a check only requires a few simple instructions. Table 1 quantifies the perfor-
mance costs of preemption checks for sample programs. For typical concurrent
scenarios, no or very low overheads can be observed. Of course, costs become
more significant if programs involve hot loops or frequent procedure calls: The
artificial spinning loop example shows approximately 20% overheads for compo-
nents running long counting loops.

Process Scheduling All runnable (including preempted) processes are queued
up in a single FIFO list (ready list) and assigned to processors by a simple round-
robin scheduler. Components are implemented as monitor-protected shared re-
sources. Each component features two waiting lists, one for processes waiting
for an exclusive lock or shared lock and one for processes waiting on a Boolean

Program With checks No checks Overheads

ProducerConsumer
(1 producer, 1 consumer,
capacity 1)

1011 1048 -3.5%

Eratosthenes
(10000 upper limit) 234 230 1.9%

TokenRing
(1000 nodes) 266 273 -2.7%

SpinningProcesses
(16 instances) 181 151 19.6%

Runtime in milliseconds, rounded to millisecond, average of 3 subsequent executions,
Intel 2 Core i7 3520M, 2.9GHz, 8GB main memory.

 Table 1. Runtime costs of preemption checkpoints

condition. The prioritization among processes follows a so-called eggshell model
[11] that grants priority handling to waiting processes whose condition has be
established over newly entering processes. This is implemented by checking the
waiting lists for established conditions whenever a process releases the moni-
tor lock (signal and exit strategy). If an established condition has been found,
the lock is immediately passed to the corresponding process. In order to avoid
potential starvation among reader or writer processes, a first-come first-served
strategy is applied to the processes entering a lock-controlled region.

Communication Channels The formal specification of communication pro-
tocols in CL empowers the runtime system to validate the implementation of
protocols at both ends, thereby upgrading the level of intercomponent commu-
nication in CL in terms of consistency checking to the level of method calls in
strongly typed languages. A state machine derived from the protocol specifica-
tion is used for this purpose. In principle, static consistency checking of protocol
implementations would also be possible up to a certain degree, albeit a complete
static analysis is impossible because the problem is equally hard as the halting
problem that is undecidable. Implementation-wise, communication channels in
CL are based on small bounded buffers (maximum of 4 messages).

3.2 Memory Management

Perhaps the biggest pay-out of our strictly hierarchical component system is
a drastically simplified memory management. Traditional systems maintain a
non-hierarchical object graph. Lacking any natural ownership relation, a sophis-
ticated system-wide process is put into action with the mandate of continuously
identifying garbage (objects to be recycled) via reachability. In COMPOSITA,
containment defines a natural ownership relation that authorizes containers (the
owners) to finalize, deallocate and recycle their content components explicitly.
In detail, deallocation of component C involves the following steps (see Figure 4
for an illustration):

1. Recursively delete (inner) components of C

2. Wait for all communications involving C to terminate
3. Disconnecting interfaces with C

Fig. 4. Component deletion

It is worth noting that our approach does not suffer from the traditional
problems of delayed finalization or from phenomena like resurrection etc., nor is
the consistency of the memory compromised at any time. Dangling pointers do
not exist, as external accesses to components never involve pointers but com-
munication instead and as any message traffic is suspended after the interface
has been disconnected. Memory leaks are impossible as well because components
remain accessible (by their container) until they are deallocated explicitly. No
component ever becomes undeletable.

4 Experimental Results

The COMPOSITA system was uncompromisingly designed with the single goal
in mind of running an extremely large number of concurrent processes that is
clearly beyond the capabilities of existing systems. Correspondingly, our first
benchmark focuses on comparative measurements of the maximum number of
(light-weight) processes that can be accommodated concurrently (on top of the
given hardware) by COMPOSITA and other systems respectively. For this pur-
pose, the benchmark creates and runs fake processes that merely execute a simple
waiting activity. Table 2 summarizes the results. As can be seen, COMPOSITA
is able to accommodate millions of processes, while the classical systems reach
their limits at a lower order of magnitude. This can quite easily be explained by
COMPOSITA’s scaling characteristics that are by design inversely linear with
regard to the stack size and linear with regard to the size of the physical memory.

For measuring the runtime performance we assembled a small set of programs
representing typical concurrency patterns, all of them rich in terms of context
switches: Producers/ Consumers (N producers and M consumers interacting via
a bounded buffer of capacity C), Sieve of Eratosthenes (a pipeline of filtering
processes determining the prime numbers between 2 and an upper limit N) and
TokenRing (a ring of N processes circularly ordered and pushing a token around
the ring 1000 times). In COMPOSITA, component interactions are modeled as
message communications with an extra service process per channel. In all other
languages, conventional method calls are used for this purpose. All measurements

were performed on an Intel 2 Core i7 3520M 2.9GHz platform, with 8GB main
memory. Table 3 clearly demonstrates that our architecture outperforms classical
thread-based systems, mostly due to COMPOSITA’s highly optimized context
switches.

COMPOSITA .NET (Win8) Java (Win8)

4,367,000 100,000 100,000

Number of light-weight processes under COMPOSITA, number of threads under .NET x64
and Java 64 bit VM, 8GB main memory, rounded on 3 figures, .NET Framework 4.5 under
Windows 8 (x64), Java 7 (1.7.0.21, 64 bit server VM) under Windows 8 (x64).

 Table 2. Maximum number of threads

Program COMPOSITA C# Java

ProducerConsumer
(N=M=C=1)

1011 5427 6020

ProducerConsumer
(N=1, M=10, C=1)

1327 22324 26255

ProducerConsumer
(N=10, M=10, C=10) 10141 40158 30513

Eratosthenes
(N=1000)

5 31 31

Eratosthenes
(N=10’000)

235 877 640

Eratosthenes
(N=100’000) 14594 49216 38023

TokenRing
(N=1000)

266 4500 4596

TokenRing
(N=10’000) 2822 49945 53582

TokenRing
(N=100’000) 30106 518956 1,163,088

Runtime in milliseconds, rounded to millisecond, average of 3 subsequent executions,
Intel 2 Core i7 3520M, 2.9GHz, 8GB main memory. C# on .NET Framework 4.5, x64,
with optimization compiler option, on Windows 8, Java 7 version 1.7.0.21, 64 bit server
under Windows 8.
 Table 3. Runtime of concurrent programs

5 Related Work

Stack architectures. Several systems share with COMPOSITA the representa-
tion of call-stacks as dynamic lists of memory blocks with the goal of to reducing
the memory footprint of thread representations [1, 9]. However, unlike COM-
POSITA’s micro-stacks, the stack size in these systems still remains roughly at

page granularity [9, 14]. Even lighter-weight threads are usually less useful to
these systems because context switches such as the ones needed for preemptive
multitasking [14, 12] are no longer possible. Such restrictions apply by purpose
for coroutines and fibers. Other implementations apply stack hijacking that is
they require the system to back up the stack contents at each context switch, so
to allow the new thread to continue on the same stack [3]. Lazy thread creation
[8] optimizes certain concurrent executions by sequentializing them. Light-weight
thread APIs and thread pools are standard facilities provided by most parallel
system implementations. However, the formers usually suffer from the need of
mapping user threads to rather inefficient kernel threads (for truly parallel execu-
tion) [14, 3], while the latters come at a cost of a de facto restricted applicability
to threads with no mutual dependencies.

Garbage collection. Garbage collection in real-time systems has become
a pain in the neck. Extremely complicated and subtle algorithms have been
conceived with the goal of eliminating or at least reducing the non-deterministic
disruptions caused by garbage collection [7, 1, 13], without having yet achieved
a truly satisfactory solution. Other approaches employ multiple isolated object
spaces, managed by separate garbage collectors (see for example Singularity
OS). COMPOSITAs memory management rests on the belief that eliminating
the problem is its best solution.

Composita. An earlier version of the system has been outlined in [5, 6].

6 Conclusion

We have invested a substantial research effort into the question of how a modern
runtime system architecture, optimally supporting massive parallelism and free
of legacy should or could look like. Our strategy was radical: develop a prototype
from the ground up as a proof of concept. The result is COMPOSITA, a kind of
a mockup of a fully grown system and uncompromisingly targeted at running an
extremely large number of concurrent processes. We consider our experiment a
success. Thanks to a number of innovative solutions, including hierarchical mem-
ory structures, micro-stacks, low-cost context switches and code-instrumented
preemption, we are able to convincingly demonstrate that both the performance
and the scalability of massive parallel hardware systems can be substantially
improved if orchestrated by cleverly designed software.

Project Website

The COMPOSITA system and all test programs used for measurements are
available at: http://concurrency.ch/Projects/Composita

Acknowlegments

We gratefully acknowledge the collaboration with Kai Nagel. Thanks to his ex-
cellent support and advice we were not only able to realize a realistic traffic

simulation on top of COMPOSITA but in addition to practically demonstrate
its performance advantage over traditional simulation systems [6]. During this
project, Felix Friedrich and Svend Knudsen continuously and patiently provided
most helpful input and valuable feedback on both the design and the implemen-
tation of our system.

References

1. D. F. Bacon, P. Cheng, and V. T. Rajan. A Real-Time Garbage Collector with Low
Overhead and Consistent Utilization. Proceedings of the Symposium on Principles
of Programming Languages (POPL), January 2003.

2. R. von Behren, J. Condit, F. Zhou et al. Capriccio: Scalable Threads for Internet
Services. Proceedings of the 19th ACM symposium on Operating systems principles
(SOSP), October 2003.

3. A. Begel, J. MacDonald, and M. Shilman. PicoThreads: Lightweight Threads in
Java. Technical Report, UC Berkeley, 2000.

4. L. Bläser. A Component Language for Structured Parallel Programming. Proceed-
ings of the Joint Modular Languages Conference (JMLC), Oxford, UK, September
2006.

5. L. Bläser. A High-Performance Operating System for Structured Concurrent Pro-
grams. Proceedings of the Workshop on Programming Languages and Operating
Systems (PLOS), October 2007.

6. L. Bläser. A Component Language for Pointer-Free Concurrent Programming and
its Application to Simulation. PhD Thesis, Diss. ETH No. 17480, ETH Zurich,
November 2007.

7. P. Cheng and G. E. Blelloch. A Parallel, Real-Time Garbage Collector. Proceedings
of the Conference on Programming Language Design and Implementation (PLDI),
June 2001.

8. S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads: Implementing a
Fast Parallel Call. Journal of Parallel and Distributed Computing, 37: 5-20, 1996.

9. G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack. ACM
SIGOPS Operating Systems Review, 41(2): 37-49, April 2007.

10. G. Hunt, J. Larus, M. Abadi, et al. An Overview of the Singularity Project. Tech-
nical Report MSR-TR-2005-135, Microsoft Research, October 2005.

11. P. J. Muller. The Active Object System: Design and Multi-processor Implementa-
tion. PhD Thesis, Diss. ETH No. 14755, ETH Zurich, 2002.

12. E. D. Polychronopoulos, X. Martorelli, D. S. Nikolopoulos et al. Kernel-Level
Scheduling for the Nano-Threads Programming Model. Proceedings of the 12th
International Conference on Supercomputing (ICS), Melbourne, Australia, July
1998.

13. Y. Sun and W. Zhang. Overview of Real-Time Java Computing. Journal of Com-
puting Science and Engineering 7.2 2013: 89-98, 2013.

14. K. B. Wheeler, R. C. Murphy and D. Thain. Qthreads: An API for Programming
with Millions of Lightweight Threads. Proceedings of the 22nd IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), April 2008.

