
Composita: Bringing Order to Agent Communications
Extended Abstract

Luc Bläser
University of Applied Sciences Rapperswil

Institute for Software
lblaeser@hsr.ch

Abstract
Keeping order in message communication is essential for build-
ing complex actor- or agent-oriented programs. Unfortunately, the
standard models do not offer much support in this regard: Com-
munication only remains an implicit effect of actor/agent imple-
mentations. To improve this structural deficiency, we advocate
EBNF-style grammar protocols for defining bilateral communi-
cations across agents or actors.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Languages

Keywords agents; actors; message communication; grammar-
based protocols

1. Introduction
With the Actor model [1, 11], message exchange can soon become
highly complex because programs lack an explicit specification of
what messages may be transmitted between which actors in which
order. Naturally, these questions are decisive for a correct combined
behavior, but unfortunately, an intended protocol is only implicitly
given by the implementation of the involved actors. Without par-
ticular care, the complexity grows quickly and finally becomes un-
manageable.

This structural deficiency can only be overcome by fitting up
agents/actors with a proper interface that provides an abstract de-
scription of their potential external interactions. We have taken such
an approach in our Composita language [3, 5]. For this purpose, we
deviate from the tradi-tional actor notion and elevate the model to
more component-oriented agents, i.e. active objects with explicit
interfaces. The interfaces serve to define bidirectional communi-
cations in a formal notation, namely EBNF-based protocols. We
present the key concepts and advantages of this model.

2. Composita Model
The Composita language [4] establishes an agent-based model
with self-active objects, called components, and protocol-structured

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

 
 

COMPONENT Restaurant 

  OFFERS RestaurantService; 

(* … *) 

END Restaurant; 

 

COMPONENT Customer 

  REQUIRES RestaurantService; 

(* … *) 

END Customer; 

Restaurant 

Customer 
 
Restaurant 
Service 

 

Restaurant 
Service 

  

Figure 1. Component templates (left) with instances in diagram
notation (right).

 
 

RestaurantServcice 

communication Customer 

Customer 

Restaurant 

communication 

Figure 2. Separate communication per pair of connected in-
stances.

communications. On the one hand, it resembles the Actor model
insofar that the objects only interact via asynchronous message
sending and reception. On the other hand, it distinguishes itself
from the Actor model in terms that message transmissions are only
allowed between predefined agent-to-agent connections and mes-
sages within the communications have to adhere an explicit pro-
tocol. The distinction deliberately serves for the sake of structural
stringency of message communication. The subsequent explanation
focuses on the concepts in more detail.

2.1 Agent-Based Components
In Composita, a component represents a unit of active stateful be-
havior that interacts with the outside via interfaces. A component
has offered and required interfaces, see Figure 1. An offered in-
terface represents a communication endpoint of the current com-
ponent that can be used by external instances. Conversely, a re-
quired interface denotes a foreign communication endpoint that
can be used by the current component. Components can be wired
by connecting required interfaces to offered interfaces, supporting
many-to-many connections. The interface enables an independent
communication between each pair of connected components, see
Figure 2.

2.2 Communication Protocols
All feasible message transmissions of a communication are thereby
defined by a protocol following the EBNF-syntax [13], see Figure



 
 

INTERFACE RestaurantService; 
  IN RequestTable(nofSeats: INTEGER) 
  ( 
    OUT Unavailable 
  |  
    [ OUT MomentPlease ] 
    OUT ComeIn 
    IN Enter 
    { IN Order(description: TEXT) } 
    { OUT ServeMeals } 
    IN PayAndLeave 
  ) 
END RestaurantService; 

Restaurant Customer 
 

Restaurant-
Service 

RequestTable 

alternatives: 

ComeIn 

Order 

MomentPlease Unavailable 

time axis 

  optional 

  

Enter 

repetition 

ServeMeals 

PayAndLeave 

  repetition 

Figure 3. Interface defining the communication protocol.

3. Messages are to be declared with an identifier and a list of
parameters that represents values to be carried as message content.
Messages with the declared IN direction are sent from an external
instance to the component offering the interface, vice versa for
OUT messages. In EBNF, a concatenation of expressions denotes
a sequence, curly braces represent arbitrary repetitions (including
zero times), vertical bars mean alternatives and square brackets
indicate options. To obtain full context-sensitive grammars, the
grammar could be organized in productions mapping non-terminal
symbols to grammar expressions.

For general implementations, protocols need to be moni-tored
at runtime, as in our system [3, 4]. Communication protocols es-
tablish contracts between the involved component/agents, making
protocol violations apparent, and allowing each side to be changed
or replaced under clear conditions, namely as long as they adhere
to the protocol.

3. Related Work
Occam [12] already introduced a protocol specification of alterna-
tives and sequences, however limited to unidirectional channels.
The concept of synchronizers [6] employs transition rules with pat-
tern matching that is general but probably less evident: the pos-
sible flow of messages as part of logical communication needs to
be derived from applying the transitions, while a structured pro-
tocol grammar denotes all valid message sequences quite directly
and simply. For example, saying that message a causes b or c, and
that message b triggers a, is less obvious than our EBNF notation
of { a b } c. Sing# [7] is similar, expressing protocols as transi-
tions in a logical state machine. The comparison of a state machine
versus EBNF notation has structurally similarities to comparing
goto-based logic with structured programming. The work of Ast-
ley et al. [2] introduces protocols with an arbitrary amount of roles,

event and message operations, as well as an informal description
of effects on events/operation. Still, it only describes effects per
message/event separately, not as structured as a grammar. Florijin’s
grammar-based protocols [8] captures context-sensitive properties
and parallelism across a set of agents. We deliberately only focus
on bilateral communication, as a tradeoff between expressiveness
and simplicity. Our protocols are also written in a proper syntax,
not only as functional parser rules.

The presented EBNF-protocols are inspired by the dialog con-
cept of Zonnon [9] and Active C# [10]. We add some refinements,
such as the high-level messages with arbitrary content instead of
directly exchanging tokens and single data values. The Composita
programming language and system are described in previous pub-
lications [3–5].

4. Conclusions
Clearly structured communication is an essential prerequisite for
designing more complex actor- or agent-oriented programs. By the
example of our Composita language, we show how this may be
achieved: Agents can be upgraded to components with explicit in-
terfaces, specifying their interactions with the outside at an abstract
level. EBNF-style protocols therein establish an expressive but sim-
ple contract for the bidirectional communication between two in-
stances.

References
[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.
[2] M. Astley, D. C. Sturman, and G. Agha. Customizable Middleware for

Modular Distributed Software, Communications of the ACM, 44(5):99-
107, 2001.

[3] L. Bläser. A Component Language for Pointer-Free Concurrent
Programming and its Application to Simulation. ETH Diss. 17480,
ETH Zürich, Nov. 2007.

[4] L. Bläser. A High-Performance Operating System for Structured
Concurrent Programs. Workshop on Programming Languages and
Operating Systems (PLOS) 2007, Stevenson WA, USA, In ACM Digital
Library, Oct. 2007.

[5] L. Bäser. A Component Language for Structured Parallel Programming.
Joint Modular Languages Conference (JMLC) 2006, Oxford, UK, In
Lecture Notes in Computer Science 4228, Springer, Sep. 2006.

[6] S. Frølund and G. Agha. A Language Framework for Multi-Object
Coordination. In Proc. of the 7th European Conference on Object-
Oriented Programming (ECOOP’93), Jul. 1993.

[7] M. Fähndrich, M. Aiken, C. Hawblitzel, et al. Language Support for
Fast and Reliable Message-Based Communication in Singularity OS.
In Proc. of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006 (EuroSys ’06), Apr. 2006.

[8] G. Florijin. Object Protocols as Functional Parsers. In Proc. of the 9th
European Conference on Object-Oriented Programming, ECOOP095,
Aug. 1995.

[9] J. Gutknecht. Zonnon Language Report. ETH Zurich,
http://www.zonnon.ethz.ch, 2009.

[10] R. Güntensperger and J. Gutknecht. Active C#. In Proc. of the Intl.
Workshop on .NET Technologies, May 2004.

[11] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor
Formalism for Artificial Intelligence. Proceedings of the 3rd International
Joint Conference on Artificial intelligence IJCAI’73. 1973.

[12] Imnos Ltd. Occam 2 Reference Manual. Prentice-Hall, 1988.
[13] N. Wirth. What Can We Do About the Unnecessary Diversity of

Notation for Syntactic Definitions? Communications of the ACM,
20(11):822-823, November 1977.


