
Persistent Oberon

A Programming Language with Integrated Persistence

Luc Bläser

Computer Systems Institute, ETH Zürich, Switzerland
blaeser@inf.ethz.ch

Abstract. This paper presents the programming language Persistent
Oberon, which offers persistence as a naturally inbuilt concept. Program
data is automatically kept durable and stored in non-volatile memory,
without the programmer having to write explicit code for the interactions
with an external database system. In the case of a system interruption
or failure, the program can directly continue from its latest consistent
state. In contrast to other existent persistent programming languages,
this language does not need any explicit or artificial programming in-
terfaces or commands to use persistence. The programming language is
completely implemented and offers a high scalability and performance.

1 Introduction

As a consequence of the traditional computer architecture with volatile main
memory, programming languages also only support a volatile memory model.
Unless the programmer takes extra efforts, the state of a program is lost when
the system or application is terminated. As a result of performance advantages
on current machines, this design may be reasonable for applications which only
perform temporary computations. However, many practical programs work on
data that should be persistent and remain present even if the system is inter-
rupted. For this area of application, programming languages currently leave the
programmer unsupported and require them to explicitly employ a separate per-
sistence system, such as a database, a serialization framework, or a file system.
Even with the help of existing software tools, the programming work and er-
ror proneness for managing persistent data within a program are still immense.
Complicated and time-consuming work is typically involved in the effective map-
ping of the program data to the persistent secondary memory (e.g. a disk) and
in programming the necessary interactions with the persistence system, for stor-
ing and loading the data at the right moments. Especially for object-oriented
programs, the intricacy is particularly high, as the dynamic reference-linked ob-
ject structures need to be efficiently represented in the persistent storage and a
memory-safe runtime support with garbage collection has to be provided on all
levels of the memory (main memory and disk).

In order to improve the support of persistent data in a program, various ap-
proaches have been taken to directly provide persistence as an inbuilt feature

of the programming language [3–6, 12, 14, 15, 19, 20, 22, 24, 34]. Although this ap-
proach seems to be the most obvious step towards simple and efficient program-
ming with persistent data, none of these programming models have received
widespread recognition in practice. A reason for this fact is certainly, that vari-
ous fundamental problems are still open in this field, such that the programmer
may decide against using a persistent language:

– Language-support
To the best of our knowledge, no programming language exists that really
features data persistence as a fully integrated concept. Existing persistent
programming languages still require artificial programming interfaces when
working with persistent data.

– Concurrency
Concurrency is generally not sufficiently supported by persistent program-
ming models, though programmers increasingly use concurrency for modern
applications.

– Interoperability
The range of practical applicability can be substantially widened for a per-
sistent programming language by introducing a more general data model,
which facilitates consistent and uniform interoperability with data of arbi-
trary longevity and already existing software.

– Safety
The runtime support for object-oriented persistent programs is often not
fully memory safe. Many persistent languages for example, require that
garbage collection has to be performed when the system is turned off.

– Efficiency
Persistent programming languages are often less efficient than a conventional
solution which uses customized interactions with a database or a persistent
storage.

A sustainable solution to these issues seems to be a prerequisite for a potential
successful prevalence of the persistent programming vision. For this purpose, we
have developed the new programming language Persistent Oberon that aims to
address these open problems. The language offers the following key features:

– Language-integrated persistence
The programming language supports data persistence as an elementary fea-
ture, without requiring any persistence-related programming interfaces and
thinking about a separate external persistence system.

– General data longevity
The programming language is based on a data model, which uniformly covers
data of arbitrary longevity, i.e. persistent, volatile and cached data can be
used in a consistent way.

– Effective and safe memory management
The runtime system incorporates effective non-disruptive and complete garbage
collection with simultaneous caching in volatile main memory. To our knowl-
edge, none of the existing systems is capable of such effective caching for per-
sistent garbage-collection, which works for this general programming model.

While Persistent Oberon has already been very briefly presented in a poster
session [11], here we describe the language in more detail, explain its rationale
and also report on its implementation. The programming language has been
completely implemented on the basis of Active Oberon [16, 28, 32], which is the
object-oriented descendant of Oberon [37, 38]. The system supplies the entire
infrastructure that is necessary for persistent programming, including a compiler
and runtime system, as well as a disk storage and program evolution facility. By
means of an experimental evaluation, we also show that the new language offers
a high scalability and performance.

The remaining paper is organized as follows: Section 2 motivates the idea of
persistent programming and identifies the main shortcomings of existing persis-
tent languages. Section 3 then describes the new programming language Persis-
tent Oberon. In Section 4, the design and implementation of the runtime system
is presented together with a performance evaluation. Section 6 reports on related
work, before we conclude this paper in Section 7.

2 State of the Art

For object-orientation, concrete criteria of a seamless integration of persistence
within a language have already been postulated by the principles of orthogonal
persistence [8, 7]:

– Persistence independence
All program operations look the same irrespective of the lifetime of the
accessed data.

– Type orthogonality
An object type does not predetermine the lifetime of its instances.

– Persistence identification
The concepts of object identification and implicit object lifetimes remain
unchanged.

The main idea of orthogonal persistence is to avoid any special handling,
which is only required or applicable to persistent data and to fully preserve the
philosophy of the underlying programming paradigm. Although many persistent
languages [3, 12, 24, 19, 6] (including non object-oriented ones) are claimed to be
orthogonally persistent, regrettably none of them fulfils this goal of language-
institutionalized persistence:

– Special program functions, interfaces and explicit textual identifiers are re-
quired in these languages, to query and fix a root of the persistent object
graph, something that is clearly contradicting the principle of persistence
independence. Persistent roots have to be handled entirely differently in
comparison to the transient ones (such as static variables in Java, module
variables in Persistent Modula-3). Figure 1 illustrates how cumbersome it is
to set up the initial persistent state in these languages. As an implication
of the special persistent roots, a program also has to explicitly determine

whether it is started for the first time or is simply resumed after interrup-
tion.

– To maintain consistency for the interruptible execution, the abovementioned
languages require explicit stabilization (checkpointing) or transactions via
dedicated persistence interfaces. These mechanisms also form persistence-
specific artifacts that are quite unnatural and complicated to use. More
especially, the approach of global checkpoints necessitates the knowledge
over the entire program, in order not to prematurely save the temporary
modifications of a non-completed logical transaction.

INTERFACE MyModule;
 IMPORT Database;
 DataEntry = OBJECT (* … *) END;
 VAR myData: DataEntry; p: Database.Public
BEGIN
 TRY
 p := NARROW(Database.Open(“MyModuleData”),
 Database.Public);
 myData := NARROW(p.getRoot(), DataEntry)
 EXCEPT
 Database.DatabaseNotFound =>
 Database.Create(“MyModuleData”);
 p := NARROW(Database.Open(“MyModuleData”,
 Database.Public)
 NEW(myData); p.SetRoot(myData)
 END
END MyModule.

Persistent Modula 3 (PM3)

import org.opj.store;
class DataEntry { /* … */ }
class MyProgram {
 static DataEntry myData;
 public static void main(String args[]) {
 PJStore p = PJStoreImpl.getStore();
 if (p.existsPRoot(“MyProgramData”)) {
 myData =
 (DataEntry) p.getPRoot(“MyProgramData”));
 }
 else {
 myData = new DataEntry;
 p.newPRoot(“MyProgramData, myData);
 }
 }
}

PJama

Fig. 1. Explicit accesses to the persistent state

3 Persistent Oberon

Persistent Oberon is based on a modular object-oriented programming model,
which combines the notion of conventional objects with the concept of modules,
as they are known in Oberon [37, 38] and Modula [36]. Modules thereby turn
out to be a key concept for introducing persistence in a natural way. Besides
being a static compilation and deployment unit, a module represents a single-
ton instance at runtime that maintains an individual data state. A module is
dynamically loaded by the system, as soon as it is used for the first time by the
user or another importing module. In the following sections, we explain the main
language concepts that are related to persistence support.

3.1 Modules

In our language, a module is designed to live infinitely long in the system. Once
loaded and initialized, the module and its contained state stays permanently
alive and survives all system restarts. Naturally, references also belong to this

persistent state and by default, remain valid at system restart. In other words,
modules constitute the persistent roots, implicitly making all transitively reach-
able objects of the modules persistent. To illustrate the meaning of this, Figure
2 outlines a persistent bank system, together with an exemplary runtime topol-
ogy of the corresponding object instances. Notably, the code of the module is
identical to a conventional transient program and no persistence-specific pro-
gramming constructs are involved here. In Persistent Oberon, a module can
only be unloaded for the reason of changing the program definition. In this case,
the runtime system provides an evolution facility that supports the programmer
to migrate the persistent data of the former module version to the newer one.

 MODULE Bank;
 TYPE
 Account = OBJECT
 VAR
 customer: Customer;
 balance: REAL;
 END Patient;
 Customer = OBJECT (* … *) END Customer;
 AccountList = OBJECT (* … *) END AccountList;
 VAR accounts: AccountList
END Bank.

Bank accounts

Account 1

Account 3

Customer 1

module
(persistent)

object
(persistent)

reference
(persistent)

Account 2

Customer 2

Fig. 2. A persistent program

3.2 Transactions

As the persistent state should always be available in a consistent way when the
system is resumed after an interruption or failure, the program execution has
to necessarily reflect the states of consistency. For this purpose, the language
uses the concept of transactions, which define statement sequences that change
the program from one consistent state to another. In Persistent Oberon, a state-
ment sequence (BEGIN-END block) is to be annotated by the TRANSACTION-
attribute if it represents a transaction, see Figure 3. All modifications, which are
performed by the execution of a transaction (including the code of directly or
indirectly called procedures), are either completely applied or not at all. Dur-
ing the uncompleted transactions, these changes are only temporarily valid and
are discarded at a system interruption. A transaction may also be prematurely
stopped by the programmer by way of the ABORT-statement. In this case, the
corresponding transaction statement block is immediately exited and none its
modification to the program state become effective.

Naturally, a transaction may also execute statement sequences which are
defined as transactions. Such transactions (executed as part of another transac-
tion) are called sub-transactions [25]. A sub-transaction can be aborted without
terminating its surrounding transaction. However, an abort of the surrounding
transaction always cancels all the sub-transactions and discards all the effects

that have been performed by the sub-transactions. Therefore, the effects of a
sub-transaction only become durable when the surrounding procedure is also
successfully finished. In other words, only the changes of a successfully finished
top-level transaction (not enclosed by another transaction) are made persistent.
In Persistent Oberon, a single modifying operation automatically forms an im-
plicit transaction if it is not enclosed by an explicit transactional statement
sequence.

Figure 3 explains the use of transactions by way of the bank example. The
Transfer procedure contains a transactional statement block, which runs as a
top-level transaction. The transactional statement blocks within the procedures
Withdraw and Deposit are called by the Transfer procedure and hence only
represent sub-transactions.

Account = OBJECT
 VAR balance: REAL;

 PROCEDURE Withdraw(amount: REAL): BOOLEAN;
 BEGIN {TRANSACTION}
 IF balance >= amount THEN
 balance:= balance - amount; RETURN TRUE
 ELSE RETURN FALSE
 END
 END Withdraw;

 PROCEDURE Deposit(amount: REAL);
 BEGIN {TRANSACTION}
 balance:= balance + amount
 END Deposit;
END Account;

PROCEDURE Transfer(from, to: Account; amount: REAL);
VAR success: BOOLEAN;
BEGIN
 BEGIN {TRANSACTION}
 success := from.Withdraw(amount);
 IF success THEN to.Deposit(amount)
 ELSE from.customer.Inform
 END
 END;
 ReportStatus(success)
END Transfer;

Fig. 3. Transactions

Both top-level and sub-transactions feature isolation with respect to serializ-
ability[9], of read- and write-accesses on the granularity of objects and modules.
This means that concurrent transactions can only see effects of others as if the
transactions were executed in a strictly serial order. A sub-transaction is however
not isolated from its enclosing transactions, as it has access to the temporary
state of the surrounding transactions.

3.3 Interoperability

To allow interoperability with existing non-persistent programs, Persistent Oberon
also supports references to objects that do not necessarily have to be persistent
but can be of shorter longevity. For example, this could be transient objects,
which are only available during an uninterrupted system phase, or cached ob-
jects, which can even vanish during the running system when memory space
becomes scarce. To enable such shorter object lifetimes, a reference can be de-
clared as transient or weak, to deviate from the default semantics of a usual
persistent reference. The meaning of a transient reference is that the target data

does not need to be retained at system interruptions. Analogously, a weak ref-
erence permits the disposal of the target reference at any time during program
execution. However, transient or weak references do not force shorter lifetime for
the referenced objects but merely figure as a suggestion for the runtime system.
The value of transient references is safely reset to NIL on system restart and
a weak reference is cleared on removal of the referenced object. Significantly,
object lifetimes are still determined by transitive reachability, such that in com-
bination with an appropriate runtime system, memory safety can be completely
ensured. This may be illustrated by Figure 4, showing an extension of the pre-
vious bank example. Everything that is not explicitly declared as transient or
weak should be persistent, that is particularly true for all data associated with
accounts. The list of account managers, which are currently logged in the system,
can be maintained as transient, since they have to logon again after a system
interruption. Furthermore, the module also maintains an object cache of the
least recently accessed accounts, which are only retained as long as free memory
space is not sought by automatic garbage collection. The right-hand side of Fig-
ure 4 shows the potential states of the program object graph in different stages,
the initial topology, after garbage collection and at system restart. Thereby, the
object lifetimes are specified as follows: All objects being transitively reachable
from a module via persistent references, are persistent. The other non-persistent
objects are transient, if they are reachable via persistent or transient references
from a module or the transient state of a running procedure (or transaction).
All remaining objects form garbage, which are possibly used as cached data, and
are eventually removed from the system.

As a result, the introduced reference semantics enable a general data model,
safely interoperable with other preexisting transient programs, such as with low-
level operating system modules. Modules written in the persistent programming
language may then import classical transient modules and reuse the therein pro-
vided logic, with the restriction that the persistent program part only interacts
with the data of the imported module by using transient (or weak) references.

3.4 Particular Functionality

We deliberately do not provide the same amount of functionality as a database
system offers. The presented model is rather designed for general-purpose pro-
gramming with a minimum set of fundamental concepts for persistence. Ad-
vanced functionality, such as special querying languages, automatic transaction
processing, mechanism of data distributions and security policies, can be indi-
vidually provided by customized program logic.

4 Runtime System

We have implemented an entire execution platform Persistent Oberon, to provide
evidence that the proposed persistent programming model can be efficiently
realized on conventional computer machines. As a fundament, we have chosen

MODULE Bank;
 TYPE
 Account = OBJECT
 VAR
 customer: Customer;
 balance: REAL;
 END Account;

 Customer = OBJECT (* … *) END Customer;
 AccountList = OBJECT (* ... *) END AccountList;
 BankManager = OBJECT (* ... *) END BankManager;
 ManagerList = OBJECT (* ... *) END ManagerList;
 VAR
 accounts: PatientList;
 managers: ManagerList;

 loggedInManagers: { TRANSIENT} ManagersList;

 leastRecentlyAccessed: { WEAK} AccountList;
END Bank.

persistent
reference

transient
reference

persistent
object

weak
reference

transient
object

garbage
object

module
(persistent)

Initial state

After garbage collection

At system restart

Manager 1

Manager 2

Account 1

Bank

managers

loggedIn
Managers

leastRecently
Accessed

Account 3
(closed)

accounts

Manager 1

Manager 2

Account 1

Bank

managers

loggedInManagers

Manager 1

Account 1

Bank
managers

Fig. 4. Using data with shorter lifetimes

the operating system AOS [28], which employs Active Oberon as the native
programming language.

4.1 Memory Management

The basic infrastructure of the memory system is the persistent object store
(POS), managing the non-volatile memory heap on a disk and enabling fault-
tolerant atomic updates or allocations. Furthermore, the system supports main
memory caching with a lazy-loading mechanism, where an object is only loaded
into memory, when requested for the first time after a system restart. As the
normal main memory addresses depend on a system run, synthetic unique ob-
ject identifiers are used for the reference values, also allowing flexible memory
movement of the objects. Consequently, these identifiers need to be mapped to
both main memory addresses and locations in the POS. This translation is re-
alized by a residency object table, implemented as a high-scalable and efficient
hash table with splay-trees as table entries [17]. Automatic garbage collection
is another decisive issue, in continuously ensuring the following memory safety
requirements:

– Durability of the latest committed states of each persistent object and mod-
ule at any time. (Only the top-level transactions change the stable state).

– Exclusion of dangling pointers, i.e. a reference pointing to an object with
shorter lifetime than the source object or module.

– Absence of memory leaks, where each non-persistent object is eventually
freed from the persistent store and each garbage object is removed from all
memory spaces with finite delay.

For this purpose, modules and objects are conceptually classified into two
disjoint sets P and T . The set P contains at least all modules and persistent
objects and furthermore, forms a transitive closure of reachability via persistent
references in the stable states. All transient objects, which are not contained in
P , belong to T . The union of P and T represents the transitive closure of reach-
ability via non-weak references in all states (persistent store and main memory).
It is essential for correctness that the latest stable states of modules and objects
of P always reside in the POS, whereas for all other objects, the POS does not
hold a value state. The accuracy of these two sets can be established by two
independent automatic garbage collectors: One, called the POS garbage collec-
tor, removes objects from P and frees the occupied space in the POS; the other
is only responsible for disposing of garbage in the main memory and is hence
named the main memory garbage collector.

At system startup, P is initialized with the set of all objects in the POS
and T is empty. When a module is activated for the very first time, an empty
state is immediately allocated for this module in the POS and the module is
added to P . Subsequently, each state modification has to be performed within a
transaction. Each transaction has an associated set, called the write-object-set
(WOS), recording all objects and modules, which have been modified or allocated
during the execution of the transaction. The write-object-set is implemented as
a combination of a bucketed list for rapid iteration and a hash-splay [17] for fast
searching.

On the commit of a top-level transaction, the system collects all object states
that have to be propagated to the persistent store, as specified on the left-hand
side of Figure 5. Thereby, it tracks the stable states for the entities unmodified
by the current transaction and otherwise, the current states in the transaction’s
WOS. Transactions cannot commit concurrently, implying that the commit pro-
cess always maintains a coherent view of the stable states. Conversely, the com-
mit of a subtransaction (in the context of nested transactions [25]) causes each
entry of its WOS to be transferred to the super-transaction, if the entry is not yet
contained in the super-transaction’s WOS. In addition, each transaction main-
tains a backup of the original states of its modified objects or modules. In the
case of a transaction abort, the corresponding backup states are restored in main
memory.

The POS garbage collector detects non-persistent objects in the POS and
safely reclaims the corresponding free space. Therefore, the collector also has to
correctly interact with the simultaneous main memory object cache. To do so,
all objects that are detected as non-persistent by the POS garbage collector, are
atomically moved to set T under exclusion of intermediate concurrent transac-
tions. As the non-persistent objects may still have transient lifetime, they are

PROCEDURE Commit(top-level transaction A);
 AcquireLock(TopLevelTransactionCommit);
 NewP := {}; MarkStack := Empty;
 FOREACH x ∈ WOS(A) with x ∈ P DO
 RefSet := persistent references in current state of x

 FOREACH reference in RefSet pointing to y ≠ NIL DO
 MarkStack.Push(y)
 END
 END;
 WHILE MarkStack is not empty DO
 x := MarkStack.Pop();

 IF x is in main memory and x ∉ P and x ∉ NewP THEN

 NewP := NewP ∪ {x};
 IF x ∈ WOS(A) THEN
 RefSet := persistent references in current state of x
 ELSE
 RefSet := persistent references in stable state of x
 END;

 FOREACH reference in RefSet pointing to y ≠ NIL DO
 MarkStack.Push(y)
 END
 END;
 Begin atomic POS update;
 FOREACH x ∈ WOS(A) with (x ∈ P or x ∈ NewP) DO
 Store current state of x in POS and set it as the stable state
 END;
 FOREACH x ∈ (NewP \ WOS(A)) DO
 Promote stable state of x to POS.
 END;
 P := P ∪ NewP;
 End atomic POS update;
 ReleaseLock(TopLevelTransactionCommit);
END Commit;

PROCEDURE RemoveNonPersistentData(object set S);
AcquireLock(TopLevelTransactionCommit);
FOREACH object x ∈ S DO
 IF x is not present in main memory THEN
 Load x into main memory
 END
END;
P := P \ S; T := T ∪ S
Delete S in the POS
ReleaseLock(TopLevelTransactionCommit);
END RemoveNonPersistentData;

Fig. 5. Cache interaction mechanism

loaded to main memory before removal from the persistent storage. The right-
hand side of Figure 5 shows the detailed cache interaction by the disposal process
of the persistent garbage collector. The described cache interaction mechanism is
combinable with any correct (and thus necessarily complete) persistent garbage
collector. Because of the characteristics of the non-volatile disk storage, such a
collector should specifically support incremental execution, fault-tolerance, min-
imal I/O-overheads and maximum progress on each collection run [23, 2]. For
these requirements, we have chosen the persistent mature object space (PMOS)
[26], as a suited underlying garbage collector. It allows incremental and com-
plete collection by using a partitioned object space. A disadvantage of PMOS
is however the overhead involved in storing small partitions, because each parti-
tion records all incoming references. On the other hand, longer disruptions of the
POS result from larger partitions, since the POS is locked during a collection and
thus blocks concurrent transaction commits. We have abandoned this trade-off
by using larger partitions and only blocking the POS during the evacuation of
a small amount of objects per partition. The disposal of non-persistent objects
is done within a single blocking period.

The main memory collector has only the task of reclaiming garbage objects
in the set T by immediately removing them from the main memory space. As
for garbage objects of P , the POS collector first moves them to T , before they
can be definitively discarded. This two-step disposal process is necessary because

objects in P may still be reachable from a root in the POS, even though they
are not so in main memory. Therefore, objects of P are considered as additional
root elements for main memory garbage collection. All states must be traced
for references and the collector can ignore references pointing to not yet loaded
objects. Before garbage is finally deleted, weak references on these objects are
reset to NIL, to avoid dangling references.

Transactional isolation is currently realized by serial transaction scheduling.
More relaxed execution could be enabled in the runtime system by strict two-
phase locking or optimistic concurrency control[9]. However, these mechanisms
possibly abort transactions to prevent deadlocks and effectiveness of unserial-
izable transactional execution, respectively. In such a case, the unexpectedly
aborted transaction needs to be restarted. The problem of this approach (and
our reason not to use it) is, that long running transactions may suffer from star-
vation, since they could be continuously aborted by the transaction scheduler.

4.2 Experimental Evaluation

To give an impression of our system’s functionality and efficiency, we have mea-
sured the performance by the OO7 benchmark [13]. The results are compared to
a classical approach, which a user would probably take if they have to develop
this persistent application (i.e. the benchmark) within a similar time frame.
Such an alternative could be JDO [35], which has been recently advertised as a
transparent persistence framework for Java, interacting with a normal database
system. Regrettably, the framework does not entirely fulfill this ideal: A pro-
grammer has to interact with special persistence API’s and needs to provide
additional XML-metadata for database mapping1. An even greater drawback is
that objects are not automatically managed by the runtime system but must be
explicitly deleted or made transient. This disagrees with the conventional Java
programming model and allows violations of the referential integrity. All tests
were run on a PC with Intel Pentium 4, 3GHz, 8KB L1 and 512KB L2 cache,
as well as 1GB main memory. The hard disk was a Seagate ST3200822AS with
200GB capacity, 8.5ms average read seek time, 7200 rpm and about 16MB/s
transfer-bandwidth. In Persistent Oberon, the data store space resided on a
10GB partition with POS-partition size of 4KB. The garbage collector was con-
tinuously active to measure the real efficiency. The JDO system is based on
Windows XP with JDK 1.5SE, JDO 1.0, JPOX 1.0.4 vendor implementation,
and MySQL 4.0 database2. Initially, the measurements should be performed with
the small OO7 configuration (about 53,000 objects inclusive collection entries).
However, this amount already exceeds the capabilities of the JDO implemen-

1 For some JDO implementations, one must even account for foreign key constraints
in the database: An acyclic data topology first needs to be allocated in the database,
before cyclic references may be set in the program.

2 Many other database systems and JDO vendor implementations could not be used
because corresponding license contracts forbid the publication of performance re-
sults.

tation, whereas our system runs perfectly with this configuration3. Therefore,
we had to scale down the configuration to make the comparison possible (8,300
objects inclusive collection entries, see the right-hand side of Figure 6). The
results are restricted to the most interesting traversals, each forming a single
top-level transaction. The remaining tests gave no further information nor did
they show up any contradictions. The left-hand side of Figure 6 summarizes
the average execution times including the commit overheads, rounded to two
significant figures. T1 is a read-only traversal, whereas T3C updates the data
set. Both traversals are distinguished by whether the transaction operates on a
cold main memory cache (meaning it is empty) or a warm cache, which already
contains all needed objects. CU resembles the costs of solely updating the warm
main memory cache. As a result, our system is not only scaling well for higher
data loads but also greatly outperforms the JDO system by a factor of about 30
to 80. As for the cache updates, the discrepancy is not that high but this time
only accounts for a small part of the total runtime cost. More details about the
benchmark implementation, as well as the complete experimental results can be
found in [10].

Persistent Oberon JDO
cold warm cold warm

T1 91 ms 23 ms 3400 ms 1800 ms
T3 C 390 ms 300 ms 13000 ms 11000 ms
CU 81 ms 115 ms

NumAtomicPerComp 10
NumConnPerAtomic 3
DocumentSize bytes 200
ManualSize bytes 1024
NumCompPerModule 30
NumAssmPerAssm 3
NumAssmLevels 3
NumCompPerAssm 3
NumModules 1

Fig. 6. OO7 performance comparison

5 Related Work

Persistent programming has a long tradition and therefore, our language is re-
lated to various existing works.

Persistent programming languages. One of the earliest programming
languages with support of persistence is PS-algol [3]. It already features per-
sistence by referential reachability, as well as a transactional execution model.
Napier88 [24] is a successor of PS-algol. Pointer type annotations were already
introduced in object-oriented Persistent Modula-3 [19] for fine-granular specifi-
cation of persistence reachability [18]. In Persistent Modula-3, a reference can
also be declared to refer to an object that ought to be always transient, even if
it could be reached over persistent references [27]. This is different to our model,

3 The JDO system fails with stack overflow errors even for very high stack sizes, or
runs out of connection ports (increasing the system parameters only helped to a
certain degree).

where a chain of persistent references from a persistent root cannot be broken by
an object explicitly forced to always be transient, which implies the risk of dan-
gling persistent references in Persistent Modula-3. [21] shows the integration of
transitive persistence into classical non-concurrent Oberon but does not support
any transactional features. Optional custom internalization and externalization
functions are proposed by [21], to ignore certain references for persistence reach-
ability, which is solved in our work using transient or weak references. PJama
[5, 6] is a system providing persistence for Java, also based on reachability from
a persistent root. Checkpoints may be performed under PJama, to update mod-
ifications of a program in the persistent store but no fine-grained transaction
model exists for threads within an application. All of the mentioned languages
do not offer a fully language-integrated persistence. They still require artificial
programming constructs to deal with persistent roots or to define transactions
or checkpoints.

Caching-aware garbage collection. We have designed our own cache
mechanism for simultaneous garbage collection in the persistent store, because
we could not find another such cache mechanism, which is applicable to our
general data model. A series of work on garbage collectors for persistent object
systems points out this issue of cache-coordination but does not address it [31,
23, 29]. An interesting collector is reported by [1, 2], which allows concurrent
modifications in main memory. The system is however not designed (and does
not work) in the presence of non-persistent references, since only reference cuts
and newly allocated objects are recorded. In our model, a transient or garbage
object can become persistent again, by converting a transient reference to a
persistent one. The collector of [30] manages both a transitory and persistent
memory heap but does not discard objects from the disk space without system
restart. The copying collector of Persistent Modula-3 [20] works in the presence
of caching but computes all persistent objects for the entire system with a global
stabilization. This is unsuited for our system, since an atomic transaction should
only update its own modified objects and should not save the temporary state
of other objects used by a different concurrent transaction. To ensure that no
flaws are possible in our system, we have formally proved the memory safety of
our caching algorithm [10].

6 Conclusion

We have demonstrated that data persistence can be featured as a naturally in-
built concept of a programming language, enabling the uniform, flexible and safe
use of data with arbitrary longevity. Such a language eventually facilitates the
development of persistent applications without bothering programmers to write
cumbersome and vulnerable code for database interactions. The programming
model is intentionally kept to a minimum of fundamental concepts and there-
fore, does not provide inbuilt mechanisms for special purposes. Instead, one can
individually augment this functionality by using customized logic or interoper-

ating with classical non-persistent program modules. The runtime system and
its source code are available at [10].

Acknowledgments

I am especially grateful to Prof. Dr. Jürg Gutknecht for many helpful discussions
during the entire work, leading to several improvements of conceptual aspects.
Many thanks also go to Raphael Güntensperger and Dr. Thomas Frey for their
important remarks regarding the design and implementation of the runtime sys-
tem.

References

1. L. Amsaleg, M. Franklin, and O. Gruber. Efficient Incremental Garbage Collection
for Workstation/Server Database Systems, Intl. Conf. on Very Large Data Bases
(VLDB), Sept. 1995.

2. L. Amsaleg, M. Franklin, and O. Gruber. Garbage Collection for a Client-Server
Persistent Object Store, ACM Transactions on Computer Systems, 17(3): 153-201,
Aug. 1999.

3. M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morrison.
PS-algol: A Language for Persistent Programming, Austrian National Computer
Conference, Sept. 1983.

4. M. P. Atkinson, M. J. Daynès, and S. Spence. Design Issues for Persistent Java.
A Type-Safe Object-Oriented Orthogonally Persistent System, Intl. Workshop on
Persistent Object Systems (POS), May 1996.

5. M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence. An Orthog-
onally Persistent Java, ACM SIGMOD Record, 25(4):68-75, Dec. 1996.

6. M. P. Atkinson and M. J. Jordan. A Review of the Rationale and Architecture
of PJama: A Durable, Flexible, Evolvable and Scalable Orthogonally Persistent
Programming Platform, Sun Labs Technical Report TR-2000-90, Sun Microsystems
Laboratories, June 2000.

7. M. P. Atkinson and R. Morrison. Orthogonally Persistent Object Systems, VLDB
Journal, 4(3):319-402, July 1995.

8. M. P. Atkinson. Programming Languages and Databases, VLDB Journal, 408-429,
1978.

9. P. A. Bernstein, V. Hadzillacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems, Addison Wesley, 1987.

10. L. Bläser. The Persistent Oberon System,
http://www.jg.inf.ethz.ch/persistence

11. L. Bläser. A Programming Language with Natural Persistence, Poster Session, In
the Companion of the Intl. Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), Oct. 2006.

12. C. Boyapati. JPS: A Distributed Persistent Java System, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Sept.
1998.

13. M. J. Carey, D. J. DeWitt, J. F. Naughton. The OO7 Benchmark, ACM SIGMOD
Conference, Washington, D.C., May 1993.

14. J. Carey, D. J. DeWitt, M. J. Franklin, et al. Shoring up persistent applications,
ACM SIGMOD Record, 23(2):383-394, June 1994.

15. A. Dearle, R. di Bona, J. Farro, et al. Grasshopper: An Orthogonally Persistent
Operating System, Computing Systems, 7(3): 289-312, 1994.

16. J. Gutknecht. Do the Fish Really Need Remote Control? A Proposal for Self-Active
Objects in Oberon, Joint Modular Languages Conference (JMLC), March 1997.

17. Z. He, S. M. Blackburn, L. Kirby, and J. Zigman. Platypus: Design and Implemen-
tation of a Flexible High Performance Object Store, Intl. Workshop on Persistent
Object Systems (POS), Sept. 2000.

18. A. L. Hosking and J. E. B. Moss. Towards Compile-Time Optimisations for Per-
sistence. Intl. Workshop on Persistent Object Systems (POS), Sept. 1990.

19. A. L. Hosking and J. Chen. PM3: An Orthogonally Persistent Systems Program-
ming Language Design, Implementation, Performance, Intl. Conf. on Very Large
Data Bases (VLDB), Sept. 1999.

20. A. L. Hosking and J. Chen. Mostly-Copying Reachability-Based Orthogonal Per-
sistence, ACM SIGPLAN Notices, 34(10), 1999.

21. M. Knasmüller. Adding Persistence to the Oberon System, Joint Modular Lan-
guages Conference (JMLC), March 1997.

22. B. Lewis, B. Mathiske, and N. Gafter. Architecture of the PEVM: A High-
Performance Orthogonally Persistent Java(tm) Virtual Machine, Intl. Workshop
on Persistent Object Systems (POS), Sept. 2000.

23. U. Maheshwari and B. Liskov. Partitioned Garbage Collection of a Large Object
Store, ACM SIGMOD, 313 - 323, 1997.

24. R. Morrison, R. C. H. Connor, Q. I. Cutts, et al. The Napier88 Persistent Program-
ming Environment, School of Mathematical and Computational Sciences, Univer-
sity of St. Andrews, Scotland, 1999.

25. J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing, MIT Press, Cambridge Mass, 1985.

26. J. E. B. Moss, D. S. Munro, and R. L. Hudson. PMOS: A Complete and Coarse-
Grained Incremental Garbage Collector for Persistent Object Stores, Intl. Work-
shop on Persistent Object Systems (POS), May 1996.

27. J. E. B. Moss and A. L. Hosking. Expressing Object Residency Optimiza-tions Using
Pointer Type Annotations, Intl. Workshop on Persistent Object Systems (POS).
Sept. 1994.

28. P. J. Muller. The Active Object System. Design and Multiprocessor Implementation,
PhD thesis 14755, Department of Computer Science, ETH Zurich, 2002.

29. D. S. Munro, A. L. Brown, R. Morrison, and J. E. B. Moss. Incremental Garbage
Collection of a Persistent Store using PMOS, Intl. Workshop on Persistent Object
Systems (POS), Sept. 1998.

30. J. O’Toole, S. Nettle, D. Gifford. Concurrent Compacting Garbage Collection of a
Persistent Heap, ACM Symposium on Operating System Principles (SOSP), Dec.
1993.

31. A. Printezis. Management of Long-Running High-Performance Persistent Object
Stores, PhD Thesis, Department of Computing Science, University of Glasgow,
May 2000.

32. P. Reali. Active Oberon Language Report, Institute of Computer Systems, ETH
Zurich, March 2002.
http://www.bluebottle.ethz.ch/languagereport/ActiveReport.pdf

33. J. Seligmann and S. Grarup. Incremental Mature Garbage Collection Using
the Train Algorithm, European Conference of Object-Oriented Programming
(ECOOP), 235 - 252, August 1995.

34. E. Skoglund, C. Ceelen, and J. Liedtke. Transparent Orthogonal Checkpointing
through User-Level Pagers, Intl. Workshop on Persistent Object Systems (POS),
Sept. 2000.

35. Sun Microsystems. Java Data Objects (JDO),
http://java.sun.com/products/jdo

36. N. Wirth. Modula: A Language for Modular Multiprogramming, Software - Practice
and Experience, 7(1): 3-35, 1977.

37. N. Wirth. The Programming Language Oberon, Software - Practice and Experience,
18(7): 671-690, July 1988.

38. N. Wirth and J. Gutknecht. The Oberon System, Software - Practice and Experi-
ence, 19(9): 857-893, Sept. 1989.

