
Motoko
The Programming Language of the Internet Computer

Luc Bläser
CySeP Summer School, Stockholm, June 13, 2023



IC Motoko

General-purpose Feature richness like JavaScript, Rust, and ML

Secure Rigorous memory, type, and numeric safety

Decentralized Actor model and asynchrony

Unstoppable Orthogonal persistence

What is Motoko?
A programming language specialized for the Internet Computer blockchain



A First Glance
import List "mo:base/List";

actor {

   type Price = Nat;

   var history = List.nil<Price>();

   public func makeBid(price : Price) : async () {

       let minimumPrice = switch (history) {

           case null 1;

           case (?(lastBid, _)) lastBid + 1;

       };

       assert(price >= minimumPrice);

       history := List.push(price, history);

   };

   …

};

Base library module

Big integer

Generics
Asynchronous function

Pattern matching

Program 
component

Type inference



Design Goals
Suitability for blockchain
● Safety
● Expressiveness

Programming productivity
● Expressiveness
● Resemblance to JavaScript, C#, Rust



Language Landscape
Suitability for blockchain

Programming productivity

Motoko

Solidity

C#,
Java

Rust

JS

limited 
programmability,
memory-unsafe

Rigid type system,
Some safety limits

Designed for
shared memory

Only 
dynamically 

typed
C++ Unsafe, 

difficult

Ecosystem 
still growing



Security Aspects
Blockchain-inherent security:
● Byzantine fault-tolerant execution
● Higher DOS resistance by replication and scalability
● Inbuilt authentication mechanism

Language-inherent safety:
● Reducing risks for bugs - and thus security vulnerabilities

Out of scope for this tutorial:
● Threshold ECDSA signing, blockchain data encryption, …



Learning Goals
Tutorial:
● Know the main concepts of the Motoko language 
● Get ready for the subsequent Motoko workshop

Workshop:
● Experience how the blockchain can be programmed -

and thus its inherent security be seamlessly applied



A Top-Down Language Tour
● Actors
● Asynchrony
● Types
● Objects
● Functions
● Persistence



Actors
Program is a set of components = actors that
● carry their encapsulated state
● run concurrently to each other
● communicate by message passing (no shared state)

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI. 1973.

send

receive

asynchronous



An Implementation Look
Each actor consists of:
● Local memory
● Incoming message queue
● Dispatch loop

○ Processing the queue sequentially 
○ Executing code per message

Message queue

Dispatch loop

Actors run sequentially on the inside and concurrently on the outside



Asynchrony
In Motoko, actor communication is realized by asynchronous functions

Async function call Send

Async function execution Receive

Return from async function Send (reply)

await expression Receive (reply)



… B.signal();

Async Function Call

send 

public func signal(): async Text {
 …
}

Actor BActor A signal



Async Function Execution

public func signal(): async Text {
 return "received";
}

receive signal

… B.signal();



Async Function Return

public func signal(): async Text {
 return "received";
}

send 

Actor B

let reply = B.signal();

Actor A

“received”



Await Expression

public func signal(): async Text {  
  …
}

let reply = B.signal();
…
let text = await reply;

“received” receive 



Continuation-Style Programming

let reply = B.signal();
…
let text = await reply;

“received” receive 

Promise / 
Future

Non-blocking
(continuation)



Async/Await Constructs
Similar to JavaScript, C#, or C++ 20

Function with an async return type
● Caller is not blocked during invocation
● Caller obtains a promise = handle for async function

await a promise
● Pause the current execution and let other code run
● Resume later when the function behind the promise has completed
● Obtain the result value of the awaited function



Seamless Integration to the IC
The software components of the IC are canisters:
● A canister is also an actor
● Async/await → actor → canister

Message encoding:
● Standard format on the IC: Candid
● Automatic encoding/decoding by Motoko



Types

Primitive Bool, Nat, Int, Float, Text, Blob, …

Tuple (Nat, Text, Bool) (123, "Motoko", true)

Record { name: Text; year: Nat } { name="CySeP"; year=2023 }

Array [Nat] [1, 2, 3]

Option ?Bool null, ?true

Variant { #North; #South; #East; #West } #North

Function Int -> Bool func (x) { x % 2 == 0 }



Mutable State
Mutable fields/arrays must be explicitly declared as var

{

 name: Text;

 var year: Nat;

}

{

 name = "CySeP";

 var year = 2023;

}

[var Nat] [var 1, 2, 3]



Semantics

Value semantics (copying)
for primitive types

var x = 0;

let y = x;

x += 1;

Debug.print(debug_show(y));

// Output: 0

Reference semantics (sharing)
for composite types

let x = { var value = 0 };

let y = x;

x.value += 1;

Debug.print(debug_show(y));

// Output: {value = 1}

Like JavaScript and Java



Shareable Types = Serializable
Types that can be sent across actors:
● Primitive types
● Immutable composed types
● No var components
● No function types

For immutability: Reference semantics = Value semantics

Also shareable: Remote calls (“shared functions”), actor references



Structural Typing
Type x is compatible to y if
● They have identical structure
● Record x declares more fields than record y (subtyping)

type Work = { author: Text; };

type Picture = { author: Text; image: Blob; };

type Literature = { author: Text; content: Text; };

let book = { author = "Shakespeare"; content = "...to be or not to be..."};

// implicitly compatible to Literature and Work



Object-Orientation
class Website(url: Text) {

   var links: [Website] = [];

   public func addLink(to: Website) {

       links := Array.append(links, [to]);

   }

};

let a = Website("dfinity.org");

let b = Website("internetcomputer.org");

let c = Website("cysep.conf.kth.se");

a.addLink(b);

b.addLink(c);

c.addLink(a);

a b

c

type Website = {

  url: Text;

  var links: [Website];

  addLink: Website -> ();

}



Automatic reclamation of unreachable objects inside the actor

Garbage Collection

Motoko features a powerful incremental GC

Actor 
field

Garbage

Alive



A Word about Safety
Type safety
● Static types
● Dynamic types
● No implicit null deref

Memory safety
● Garbage collection

Numeric safety
● Unbound integers
● Overflow always checked



Comparison to Other Languages
Rust
● Memory leaks with reference counters possible
● Overflow not checked in production mode
● “Unsafe” mode

C#, Java, JavaScript
● Unchecked overflows (in production mode)
● BigInt is not the default integer type
● Prone to null deref exceptions

→ Safety is particularly important on blockchain



Functions
public func translate(input: Text): async Text { … }

public func store(content: Blob): async () { … }

func max(x: Nat, y: Nat): Nat = x + y;

func printArray(array: [?Int]) { … }

Support both imperative and functional programming
● switch (with pattern matching), if-else
● if, while, loop, for, return
● function calls, await
● Local variables, local functions



Imperative Programming

let array: [?Int] = …;

var sum = +0;

var gaps = false;

for (entry in array.vals()) {

    switch entry {

        case (?number) { sum += number };

        case null { gaps := true }

    }

};

Debug.print("Sum " # debug_show(sum) # " gaps: " # debug_show(gaps));

null test with 
pattern matching

Iterator



Functional Programming
let (sum, gaps) = Array.foldLeft<?Int, (Int, Bool)>(

   array, 

   (+0, false), 

   func((leftSum, leftGaps), entry) {

       switch entry {

           case (?number) (leftSum + number, leftGaps);

           case null (leftSum, true);

       };

   }

);

Debug.print("Sum " # debug_show (sum) # " gaps: " # debug_show (gaps));

Anonymous function (lambda)



Orthogonal Persistence
IC canisters and thus actors live conceptually perpetually
● State is automatically persisted
● No need for a database, file system, external storage

Special aspect: Upgrade
● Changing the program implementation
● Requires evolving the existing data



Persistent Program
actor {

   …

   type Auction = {

       id : AuctionId;

       item : Item;

       var bidHistory : List.List<Bid>;

       var remainingTime : Nat;

   };

  

   var auctions = List.nil<Auction>();

   var idCounter = 0;

   …

};

However, state is discarded on 
program change (upgrade)



Prepare for Upgrade
actor {

   …

   type Auction = {

       id : AuctionId;

       item : Item;

       var bidHistory : List.List<Bid>;

       var remainingTime : Nat;

   };

  

   stable var auctions = List.nil<Auction>();

   stable var idCounter = 0;

   …

};

Survive upgrade to 
future program version



Stable Modifier
Everything transitively reachable from stable fields is upgraded
● Motoko automatically transitions the stable sub-graph of the heap

Only certain types can be upgraded
● No function types

Can also upgrade non-stable variables with upgrade hooks
● See documentation



Stable types

Type Categories

Shared types
(serializable)

All types

Function types

Mutable 
records

Mutable 
arrays



Modules
Set of functionality that can be imported to actors and other modules.

Base library modules:

"mo:base/Timer" One-shot or periodic time events

"mo:base/Principal" Authentication (Internet Identity)

"mo:base/Debug" Debug output, raising errors (traps)

"mo:base/List" List data structure (stable type)

…



Conclusion
Motoko aims for optimal programming on the IC blockchain

First-class support of IC-concepts
● Actors, orthogonal persistence

Easy to learn 
● Resemblance to JavaScript, Rust, ML

Emphasis on safety
● Higher than in other languages



Upcoming: Motoko Workshop

Mini-Hackathon:
Developing an 
Auction Platform
with Motoko on the IC



Motoko Workshop

https://github.com/luc-blaeser/auction 

https://github.com/luc-blaeser/auction


Learn More
● Motoko Documentation: 

https://internetcomputer.org/docs/current/motoko/main/motoko
● Motoko Open Source Repository:

https://github.com/dfinity/motoko

https://internetcomputer.org/docs/current/motoko/main/motoko
https://github.com/dfinity/motoko


Common Pitfalls

Using await carelessly Other async code can run in meantime at await. Beware of 
race conditions!

Missing stable modifier (or 
upgrade hooks)

Data will be lost on program version upgrade!

Using query functions Requires a certified variable to be secure

Blockchain transaction limit Message runtime is limited, split into shorter messages or 
async / await sections

Public actor functions 
without return type

One-way calls (“fire and forget”), no propagation of errors, 
specify return type async() and await


