DFINITY

3, 2023

CySeP Summer School, Stockholm, June 1

What is Motoko?

A programming language specialized for the Internet Computer blockchain

Motoko ‘

General-purpose

Feature richness like JavaScript, Rust, and ML

Secure

Rigorous memory, type, and numeric safety

Decentralized

Actor model and asynchrony

Unstoppable

Orthogonal persistence

CO

DFINITY

A First Glance
—

Base library module]

import List "mo:base/List";

actor { P
[Program Y A Big mteger]

type Price = Nat;
component

var history = List.nil<Price>();

public func makeBid(price : Price) : async () {

_ let minimumPrice = switch (history) {
[Type inference f
case null 1;

Asynchronous function]

case (?(lastBid, _)) lastBid + 1; | Pattern matching]

}

assert(price >= minimumPrice);

history := List.push(price, history);
}

- oo

DFINITY

Design Goals

Suitability for blockchain
o Safety
e EXpressiveness

Programming productivity
e Expressiveness
e Resemblance to JavaScript, C#, Rust

00

DFINITY

Language Landscape

Suitability for blockchain
Ecosystem
still growing
Solidity
c#, Designed for
limited Java shared memory
programmability, Rust
memory-unsafe
Rigid type system,
Some safety limits Only
JS dynamically
typed
Ctt Unsafe, P
difficult
Programming productivity o0

DFINITY

Security Aspects

Blockchain-inherent security:
e Byzantine fault-tolerant execution
e Higher DOS resistance by replication and scalability
e Inbuilt authentication mechanism

Language-inherent safety:
e Reducing risks for bugs - and thus security vulnerabilities

Out of scope for this tutorial:
e Threshold ECDSA signing, blockchain data encryption, ...

00

DFINITY

Learning Goals

Tutorial:
e Know the main concepts of the Motoko language
e (et ready for the subsequent Motoko workshop

Workshop:
e Experience how the blockchain can be programmed -
and thus its inherent security be seamlessly applied

00

DFINITY

A Top-Down Language Tour

Actors
Asynchrony
Types
Objects
Functions
Persistence

CO

DFINITY

Actors

Program is a set of components = actors that
e carry their encapsulated state
e run concurrently to each other
e communicate by message passing (no shared state)

OJ==[0

receive

asynchronous

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for Atrtificial Intelligence. IJCAI. 1973.

CO

DFINITY

An Implementation Look

Each actor consists of:
P Local memory Message queue
e Incoming message queue
e Dispatch loop

o Processing the queue sequentially
o Executing code per message

Dispatch loop

Actors run sequentially on the inside and concurrently on the outside

CO

DFINITY

Asynchrony

In Motoko, actor communication is realized by asynchronous functions

Async function call Send

Async function execution Receive
Return from async function Send (reply)
await expression Receive (reply)

CO

DFINITY

Async Function Call

Actor % | Actor B
.. B.signal();

public func signal(): async Text {

.

CO

DFINITY

Async Function Execution

receive II

public func signal(): async Text {
return "received";

}

.. B.signal();

CO

DFINITY

Async Function Return

Actor A II Actor B

let reply = B.signal(); Nublic func signal(): async Text {
send t return "received";
“rec }

CO

DFINITY

Await Expression

“received” receive

™N
let reply = B.signal();

public func signal(): async Text {
let text = await reply; /)

CO

DFINITY

Continuation-Style Programming

Promise /
Future

“received}

receive

let reply = B.signal();

™N
let text = await reply;)/

Non-blocking
(continuation)

CO

DFINITY

Async/Await Constructs

Similar to JavaScript, C#, or C++ 20

Function with an async return type
e Caller is not blocked during invocation
e Caller obtains a promise = handle for async function

await a promise
e Pause the current execution and let other code run

e Resume later when the function behind the promise has completed
e Obtain the result value of the awaited function

CO

DFINITY

Seamless Integration to the IC

The software components of the IC are canisters:

e A canister is also an actor
e Async/await — actor — canister

Message encoding:
e Standard format on the IC: Candid
e Automatic encoding/decoding by Motoko

CO

DFINITY

Types

Primitive Bool, Nat, Int, Float, Text, Blob,

Tuple (Nat, Text, Bool) (123, "Motoko", true)
Record { name: Text; year: Nat } { name="CySeP"; year=2023 }
Array [Nat] [1, 2, 3]

Option ?Bool null, ?true

Variant { #North; #South; #East; #West } #North

Function Int -> Bool func (x) { x % 2 ==0 }

CO

DFINITY

Mutable State

Mutable fields/arrays must be explicitly declared as var

{ {

name: Text; name = "CySeP";
var year: Nat; var year = 2023;
} }

[var Nat] [var 1, 2, 3]

00

DFINITY

Semantics

Value semantics (copying) Reference semantics (sharing)
for primitive types for composite types

var x = 0: let x = { var value = 0 };

let y = x; let y = x;

X += 1; x.value += 1;
Debug.print(debug_show(y)); Debug.print(debug_show(y));

// Output: © // Output: {value = 1}

Like JavaScript and Java

CO

DFINITY

Shareable Types = Serializable

Types that can be sent across actors:
e Primitive types
e Immutable composed types
e No var components
e No function types

For immutability: Reference semantics = Value semantics

Also shareable: Remote calls (“shared functions™), actor references

CO

DFINITY

Structural Typing

Type X is compatible to y if
e They have identical structure
e Record x declares more fields than record y (subtyping)

type Work = { author: Text; };
type Picture = { author: Text; image: Blob; };

type Literature = { author: Text; content: Text; };

let book = { author = "Shakespeare"; content = "...to be or not to be..."};

// implicitly compatible to Literature and Work

CO

DFINITY

Object-Orientation

class Website(url: Text) { let a = Website("dfinity.org");
var links: [Website] = []; let b = Website("internetcomputer.org");
let ¢ = Website("cysep.conf.kth.se");
public func addLink(to: Website) { a.addLink(b);
links := Array.append(links, [to]); b.addLink(c);
} c.addLink(a);

type Website = { <\\
url: Text;
var links: [Website];

addLink: Website -> ();
}

\~ = 00

DFINITY

Garbage Collection

Automatic reclamation of unreachable objects inside the actor

Actor

field '
Alive

Motoko features a powerful incremental GC O

DFINITY

A Word about Safety

Type safety
e Static types
e Dynamic types
e No implicit null deref

Memory safety
e Garbage collection

Numeric safety
e Unbound integers
e Overflow always checked

o

DFINITY

Comparison to Other Languages

Rust
e Memory leaks with reference counters possible
e Overflow not checked in production mode
e “Unsafe” mode

C#, Java, JavaScript
e Unchecked overflows (in production mode)
e Biglnt is not the default integer type
e Prone to null deref exceptions

— Safety is particularly important on blockchain

CO

DFINITY

Functions

public func translate(input: Text): async Text { ..}
public func store(content: Blob): async () { ..}
func max(x: Nat, y: Nat): Nat = x + y;

func printArray(array: [?Int]) { ..}

Support both imperative and functional programming
switch (with pattern matching), if-else

if, while, loop, for, return

function calls, await

Local variables, local functions

CO

DFINITY

Imperative Programming

let array: [?Int] = ..;

var sum = +0;
var gaps = false;

for (entry in array.vals()) { null test with 1

switch entry { pattern matching

case (?number) { sum += number };

case null { gaps := true }

3
Debug.print("Sum

debug_show(sum) # " gaps: " # debug_show(gaps));

CO

DFINITY

Functional Programming

let (sum, gaps) = Array.foldLeft<?Int, (Int, Bool)>(
array,

(+0, false),

/?hnc((leftSum, leftGaps), entry) { \\\
switch entry {

case (?number) (leftSum + number, leftGaps); Anonymous function (lambda)

case null (leftSum, true);
}
N /
);
Debug.print("Sum

debug_show (sum) # " gaps: # debug_show (gaps));

CO

DFINITY

Orthogonal Persistence

|IC canisters and thus actors live conceptually perpetually
e State is automatically persisted
e No need for a database, file system, external storage

Special aspect: Upgrade
e Changing the program implementation
e Requires evolving the existing data

o

DFINITY

Persistent Program

actor {

type Auction = {

var

var

id : Auctionld;
item : Item;
var bidHistory : List.List<Bid>;

var remainingTime : Nat;

auctions = List.nil<Auction>();

idCounter = 0;

However, state is discarded on
program change (upgrade)

CO

DFINITY

Prepare for Upgrade

actor {

type Auction = {
id : Auctionld;
item : Item;

var bidHistory : List.List<Bid>;

var remainingTime : Nat;

|2

Survive upgrade to
future program version

stable var auctions = List.nil<Auction>();

stable var idCounter = 0;

CO

DFINITY

Stable Modifier

Everything transitively reachable from stable fields is upgraded
e Motoko automatically transitions the stable sub-graph of the heap

Only certain types can be upgraded
e No function types

Can also upgrade non-stable variables with upgrade hooks
e See documentation

00

DFINITY

Type Categories

All types

Function types

Stable types

Mutable
arrays

Mutable
records

Shared types
(serializable)

CO

DFINITY

Modules

Set of functionality that can be imported to actors and other modules.

Base library modules:

"mo:base/Timer" One-shot or periodic time events
"mo :base/Principal” Authentication (Internet Identity)
"mo :base/Debug"” Debug output, raising errors (traps)
"mo:base/List" List data structure (stable type)

CO

DFINITY

Conclusion

Motoko aims for optimal programming on the IC blockchain

First-class support of IC-concepts
e Actors, orthogonal persistence

Easy to learn
e Resemblance to JavaScript, Rust, ML

Emphasis on safety
e Higher than in other languages

00

DFINITY

Upcoming: Motoko Workshop

Motoko Auction Platform

Motoko Auction

Mini-Hackathon: s

Developing an 1055
Auction Platform
with Motoko on the IC

20§ 81 seconds P i g
21§ 68 seconds by kjv-6fdfx-lyjdp-dil bt Ibit-p: hs e

DFINITY

Motoko Workshop

https://github.com/luc-blaeser/auction

CO

DFINITY

https://github.com/luc-blaeser/auction

Learn More

e Motoko Documentation:
https://internetcomputer.org/docs/current/motoko/main/motoko

e Motoko Open Source Repository:
https://qithub.com/dfinity/motoko

DFINITY

https://internetcomputer.org/docs/current/motoko/main/motoko
https://github.com/dfinity/motoko

Common Pitfalls

Using await carelessly Other async code can run in meantime at await. Beware of
race conditions!

Missing stable modifier (or | Data will be lost on program version upgrade!
upgrade hooks)

Using query functions Requires a certified variable to be secure

Blockchain transaction limit | Message runtime is limited, split into shorter messages or
async / await sections

Public actor functions One-way calls (“fire and forget”), no propagation of errors,
without return type specify return type async() and await

DFINITY

