DFINITY

//

CySeP Summer School Stockholm, June 12, 2024

The Internet Computer (IC)

A secure distributed virtual machine:
e Replicating computation across distributed nodes
e Byzantine-fault-tolerant consensus on computation

Application cases:
e Decentralized exchanges, smart contracts, DAOs, cloud services, ...

Our example: Auction platform

CO

DFINITY

Selection of Languages

Low-level: WebAssembly with specific API
High-level: Any language that compiles to WebAssembly

TypeScript Rust Motoko

®

Designed for IC

G ...more...

CO

DFINITY

A First Glance with TypeScript

import { ic, Canister, Void, update, nat } from 'az% Typescript IC]
package

let history: nat[] = []; Big natural
number on IC

export default Canister({

makeBid: update([nat], Void, (price) => {t[Ifnxaplfgtsgdl?p?’siy:g:fugce:ltito)n }

if (price < minimumPrice())
ic.trap("Price too low");

}

history.unshift(price);

})
)
GO

DFINITY

Same in Motoko

import List "mo:base/List"; % Motoko base library]

[Software]>
component actor {

stable var history = List.nil<Nat>();

public func makeBid(price : Nat) : async () {ﬁ Exported IC function]
assert(price >= minimumPrice());

history := List.push(price, history);
}

CO

DFINITY

Motivation of Motoko

Optimized for blockchain programming:

e Direct IC integration
o Inbuilt language concepts for IC aspects

e Safety & security

o Type safety covering IC aspects, garbage collection, supply chain security, ...

e [Easytolearn
o Resemblance to Typescript, C#, and Ocaml

e Efficiency
o Runtime system optimized for blockchain

CO

DFINITY

Motoko's Position

Blockchain suitability

Solidity

Ethereum-customized,
limited expressiveness,

some safety limits
Rust

Rigid type system,
some safety limits,
restricted features on IC

Ctt Unsafe,
difficult

IC-customized,
safe and expressive,
ecosystem still growing

Type- IC integration by API,
Script limited efficiency & safety

Java- Only dynamically typed
Script

Programming productivity

==

C#, Not yet supported on IC

Java m

DFINITY

Learning Goals

Tutorial:
e Get an overview of blockchain programming on the IC
e See how this is supported in different programming languages

Workshop:
e Experience how the blockchain can be programmed -
Choose a language of your preference (Motoko, Typescript, Rust)

00

DFINITY

Tutorial Overview

|C programming:

e Canisters/Actors

Asynchrony

State Examples in
Transactions -
Persistence “
Safety

Security

Performance

00

DFINITY

Software Components

A program on the IC is a set of components, called canisters.

Canisters are actors that
e carry their encapsulated state
e run concurrently to each other
e communicate by message passing (no shared state)

OJ==[0

receive

asynchronous

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for Atrtificial Intelligence. IJCAI. 1973.

CO

DFINITY

An Implementation Look

Each actor consists of:
e Local memory Message queue
o Stored on blockchain
e Incoming message queue
o Also on blockchain
e Dispatch loop

o Processing the queue sequentially
o Executing code per message

Dispatch loop

Actors run sequentially on the inside and concurrently on the outside

CO

DFINITY

Asynchrony

Asynchronous programming can be mapped to actor communication

Async/Await Model Actor Model
Async function call Send

Async function execution Receive
Return from async function Send

await expression Receive

Used by Motoko, Rust, TypeScript for the IC

CO

DFINITY

Async Function Call

G Actor @ H Actor B
.. B.increase();

public func increase(): async Nat {

.

CO

DFINITY

Async Function Execution

receiveé _|increase II

. B.increase(); public func increase(): async Nat {
counter += 1;
return counter;

}

CO

DFINITY

Async Function Return

Actor A II Actor B

let future = B.increase(); (public func increase(): async Nat {
send counter += 1;

return counter ’
counter }

CO

DFINITY

Await Expression

receive
counter
let future = B.increase(); \1 \

public func increase(): async Nat {
let counter = await future;/)

CO

DFINITY

Actor in Motoko

actor {
stable var counter = 0; { Internal state]

public func increase() : async Nat { _
Callable from outside

counter += 1;

return counter;
b

Type system statically checks:
e Calls match function declaration
e Arguments & result are serializable

CO

DFINITY

Canister in TypeScript

let counter: nat = 9;
Internal state

export default Canister({

[Default call mode]

increase: update([], nat, () => {

counter++;
return counter; Return type }

[Argument types } |
}) I\ Function signature is checked at runtime

I\ Arguments/result must be IC types

1)

CO

DFINITY

Canister State

State of actor/canister is stored on the blockchain
e Can have any object-oriented structure

class Website(url: Text) { let a = Website("dfinity.org");
var links: [Website] = []; let b = Website("internetcomputer.org");
let ¢ = Website("cysep.conf.kth.se");
public func addLink(to: Website) { a.addLink(b);
links := Array.append(links, [to]); b.addLink(c);
} c.addLink(a);
}

DFINITY

Garbage Collection

Automatic reclamation of unreachable objects inside the actor

Actor
field

Garbage

Motoko features a blockchain-optimized GC

L. Blaser, C. Russo, U. Degenbaeyv, O. S. Agagan, G. Greif, and J. Ibrahim. Collecting Garbage on the Blockchain, VMIL, 2023. o % v

Transactions

Function calls run as transactions.

Call end and awaits denote commit points:
e Success: Apply all changes to blockchain
e Trap: Rollback all recent changes/effects

' Transaction ' Transaction '
State #0 State #1 Trap -> State #1
Rollback

Transaction

State #2

CO

DFINITY

Precondition Checking

Trap if
violated

&

if (price < minimumPrice()) { assert(price >= minimumPrice());

ic.trap("Price too low”);i Abort & J history := List.push(price, history);

} Rollback

history.unshift(price);

Commit change
on call return

CO

DFINITY

Caller Identification
Principal is a public key

public shared (message) func check() : async () { G
let originator = message.caller; a3 identifier of the caller, e.g.

if (Principal.isAnonymous(originator)) { un4fu-tqaaa-aaaab-qadjq-cai
Debug.trap("Anonymous caller");

b

i check: update([], Void, () => {
Ts let originator = ic.caller();

if (originator.isAnonymous()) {

ic.trap("Anonymous caller");

GO

DFINITY

Persistence and Upgrades

|IC canisters and thus actors live conceptually perpetually
e State is automatically persisted across transactions

Special aspect: Upgrade
e Changing the program implementation
e Requires evolving the existing data

Without special attention,
state is discarded on program
change (upgrade).

GO

DFINITY

Motoko: Orthogonal Persistence

actor {

type Auction = {
id : Auctionld;
item : Item;
var bidHistory : List.List<Bid>;

var remainingTime : Nat; Survive upgrade to
future program version

stable var auctions = List.nil<Auction>();

stable var idCounter = 0;

) Stable modifier should
' become default in future o0

DFINITY

Stable Modifier

Everything transitively reachable from stable fields is upgraded:
e Motoko automatically transitions the stable sub-graph of the heap.
e Safety check: Ensures that data evolution is compatible.

Only certain types can be upgraded
e No function types

00

DFINITY

Other Languages: TypeScript, Rust, etc.

No support for orthogonal persistence across upgrades.
Need to store data explicitly in separate stable memory:

e Stable data structures
e See documentation

let map = StableBTreeMap<Key, Auction>(0);

Restricted to
serializable types

CO

DFINITY

Safety for Blockchain Programming

Motoko:
e Memory safety (GC), static type safety, numeric safety
e Static checks include IC aspects (actor calls, persistence etc.)
e Capability system to mitigate supply chain attacks

Other languages:
e |C aspects are not statically checked (e.g. calls)
e Data can be corrupted with stable memory/data structures
e Rust: unsafe code, unchecked overflows in release mode,
memory leaks with cyclic reference counting
e Vulnerable to supply chain attacks (unrestricted IC APl access)

o

DFINITY

Performance

|IC usage is charged in terms of instructions and memory
e #Instructions per transaction is also limited (40 billion)

Auction with 1000 entries, each 100 bids, makeBid()

Jﬁ

Runtime
optimized for IC

|

TypeScript Rust Motoko
Binary size 2.2 MB 690 KB 177 KB
Instructions 19_000_000 25_000 19_000
Memory 26 MB 12 MB 12 MB

CO

DFINITY

Benefits of A Bespoke Language

Motoko offers advanced runtime supported tailored to the IC:
e Blockchain-optimized garbage collector
e Static checks of IC features
e Orthogonal persistence for upgrades
e Efficient (de)serialization driven by static types

— This is not available in mainstream language implementations

Upcoming:

e Constant-time upgrade with 64-bit persistent main memory
https://qithub.com/dfinity/motoko/pull/4488

o

DFINITY

https://github.com/dfinity/motoko/pull/4488

Conclusion

The IC is a powerful runtime platform for secure distributed applications

Supports various programming languages:
e TypeScript, Motoko, Rust, and more

Motoko has been specifically designed for the IC:
e First-class support of IC-concepts
e Focus on safety, yet simple and expressive
e Efficient and advanced runtime mechanisms

DFINITY

Upcoming: IC Programming Workshop

Auction Platform

IC Blockchain Programming Workshop

Mini-Hackathon:
Deve I 0p| ng a n Get a seat in the blockchain programming workshop at CySep
Auction Platform on @
the IC
102 ICP

Choose a language:

. M Oto ko 103Remai"i"-

e TypeScript

. RUSt History

CO

DFINITY

|C Blockchain Programming Workshop

https://github.com/luc-blaeser/auction

CO

DFINITY

https://github.com/luc-blaeser/auction

Learn More

e Motoko Documentation:
https://internetcomputer.org/docs/current/motoko/main/motoko

e Motoko Open Source Repository:
https://qithub.com/dfinity/motoko

e TypeScript Development Kit for IC (Azle):
https://internetcomputer.org/docs/current/developer-docs/backend/typescript

e Rust Development Kit for IC:
https://internetcomputer.org/docs/current/developer-docs/backend/rust/

CO

DFINITY

https://internetcomputer.org/docs/current/motoko/main/motoko
https://github.com/dfinity/motoko
https://internetcomputer.org/docs/current/developer-docs/backend/typescript
https://internetcomputer.org/docs/current/developer-docs/backend/rust/

Common Pitfalls

Using await carelessly

Other async code can run in meantime at await. Beware of
race conditions!

Using normal variables for
canister state

Data will be lost on program version upgrade!
Motoko: Use stable modifier
Otherwise: Use stable data structures

Using query functions

Requires a certified variable to be secure.
Otherwise: Use regular functions (“update” in TypeScript)

Transaction instruction limit

Transaction runtime is limited, split into shorter running
functions or async / await sections

Public actor functions
without return type

One-way calls (“fire and forget”), no propagation of errors,
Motoko: specify return type async() and await CO

DFEINILT

Appendix: Motoko Overview

IIIIIII

Types

Primitive Bool, Nat, Int, Float, Text, Blob,

Tuple (Nat, Text, Bool) (123, "Motoko", true)
Record { name: Text; year: Nat } { name="CySeP"; year=2023 }
Array [Nat] [1, 2, 3]

Option ?Bool null, ?true

Variant { #North; #South; #East; #West } #North

Function Int -> Bool func (x) { x % 2 ==0 }

CO

DFINITY

Mutable State

Mutable fields/arrays must be explicitly declared as var

{ {

name: Text; name = "CySeP";
var year: Nat; var year = 2023;
} }

[var Nat] [var 1, 2, 3]

00

DFINITY

Semantics

Value semantics (copying) Reference semantics (sharing)
for primitive types for composite types

var x = 0: let x = { var value = 0 };

let y = x; let y = x;

X += 1; x.value += 1;
Debug.print(debug_show(y)); Debug.print(debug_show(y));

// Output: © // Output: {value = 1}

Like JavaScript and Java

CO

DFINITY

Shareable Types = Serializable

Types that can be sent across actors:
e Primitive types
e Immutable composite types
e No var components
e No function types

Automatic serialization/deserialization to IC standard format (Candid)
For immutability: Reference semantics = Value semantics
Also shareable: Remote calls (“shared functions”), actor references

CO

DFINITY

Structural Typing

Types are equal if
e They have the identical structure

e Fields can be reordered

type Photo = { pixels: Blob; metadata: Text; };
type Picture = { metadata: Text; pixels: Blob; };

// Photo and Picture are equal

CO

DFINITY

Subtyping

Type T is compatible to U if
e They have identical structure, or
e Record T declares more fields than record U

type Work = { author: Text; };
type Picture = { author: Text; image: Blob; };

type Literature = { author: Text; content: Text; };

let book = { author = "Shakespeare"; content = "...to be or not to be..."

// implicitly compatible to Literature and Work

CO

DFINITY

Functions

public func translate(input: Text): async Text { ..}
public func store(content: Blob): async () { ..}
func max(x: Nat, y: Nat): Nat = x + y;

func printArray(array: [?Int]) { ..}

Support both imperative and functional programming
switch (with pattern matching), if-else

if, while, loop, for, return

function calls, await

Local variables, local functions

CO

DFINITY

Asynchronous Programming

func test(): async Text {

[Promise J Iet future = B.increase();

Async call 1

let text = await future;

return text,;

}

Non-blocking
(continuation)

func increase(): async Nat { .. }

CO

DFINITY

Async/Await Constructs

Similar to JavaScript, C#, or C++ 20

Function with an async return type
e Caller is not blocked during invocation
e Caller obtains a promise = handle for async function

await a promise
e Pause the current execution and let other code run

e Resume later when the function behind the promise has completed
e Obtain the result value of the awaited function

CO

DFINITY

Imperative Programming

let array: [?Int] = .;

var sum = +0;
var gaps = false;

for (entry in array.vals()) { null test with 1

switch entry { pattern matching

case (?number) { sum += number };

case null { gaps := true }

3
Debug.print("Sum

debug_show(sum) # " gaps: " # debug_show(gaps));

CO

DFINITY

Functional Programming

let (sum, gaps) = Array.foldLeft<?Int, (Int, Bool)>(
array,

(+0, false),

/?hnc((leftSum, leftGaps), entry) { \\\
switch entry {

case (?number) (leftSum + number, leftGaps); Anonymous function (lambda)

case null (leftSum, true);
}
N /
);
Debug.print("Sum

debug_show (sum) # " gaps: # debug_show (gaps));

CO

DFINITY

Type Categories

All types

Function types

Stable types
(persistent across upgrades)

Mutable
arrays

Mutable
records

Shared types
(serializable)

CO

DFINITY

Modules

Set of functionality that can be imported to actors and other modules.

Base library modules:

"mo:base/Timer" One-shot or periodic time events
"mo :base/Principal” Authentication (Internet Identity)
"mo :base/Debug"” Debug output, raising errors (traps)
"mo:base/List" List data structure (stable type)

CO

DFINITY

