
Powerful Blockchain Programming
on the Internet Computer

Luc Bläser
CySeP Summer School, Stockholm, June 12, 2024

The Internet Computer (IC)
A secure distributed virtual machine:
● Replicating computation across distributed nodes
● Byzantine-fault-tolerant consensus on computation

Application cases:
● Decentralized exchanges, smart contracts, DAOs, cloud services, …

Our example: Auction platform

Selection of Languages
Low-level: WebAssembly with specific API
High-level: Any language that compiles to WebAssembly

...more…

TypeScript Rust Motoko
Designed for IC

A First Glance with TypeScript

import { ic, Canister, Void, update, nat } from 'azle';

let history: nat[] = [];

export default Canister({

 makeBid: update([nat], Void, (price) => {

 if (price < minimumPrice()) {

 ic.trap("Price too low");

 }

 history.unshift(price);

 })

 …

})

Big natural
number on IC

Typescript IC
package

Exported IC async function
makeBid(price: nat)

Same in Motoko

import List "mo:base/List";

actor {

 stable var history = List.nil<Nat>();

 public func makeBid(price : Nat) : async () {

 assert(price >= minimumPrice());

 history := List.push(price, history);

 };

 …

};

Exported IC function

Software
component

Motoko base library

Motivation of Motoko
Optimized for blockchain programming:

● Direct IC integration
○ Inbuilt language concepts for IC aspects

● Safety & security
○ Type safety covering IC aspects, garbage collection, supply chain security, …

● Easy to learn
○ Resemblance to Typescript, C#, and Ocaml

● Efficiency
○ Runtime system optimized for blockchain

Motoko’s Position
Blockchain suitability

Programming productivity

Motoko
Solidity

Java-
Script

Ethereum-customized,
limited expressiveness,

some safety limits
Rust

Rigid type system,
some safety limits,

restricted features on IC

C#,
Java

Not yet supported on IC

Only dynamically typed

C++ Unsafe,
difficult

IC-customized,
safe and expressive,

ecosystem still growing

Type-
Script

IC integration by API,
limited efficiency & safety

Learning Goals
Tutorial:
● Get an overview of blockchain programming on the IC
● See how this is supported in different programming languages

Workshop:
● Experience how the blockchain can be programmed -

Choose a language of your preference (Motoko, Typescript, Rust)

Tutorial Overview
IC programming:
● Canisters/Actors
● Asynchrony
● State
● Transactions
● Persistence
● Safety
● Security
● Performance

Examples in

Software Components
A program on the IC is a set of components, called canisters.

Canisters are actors that
● carry their encapsulated state
● run concurrently to each other
● communicate by message passing (no shared state)

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI. 1973.

send

receive

asynchronous

An Implementation Look
Each actor consists of:
● Local memory

○ Stored on blockchain

● Incoming message queue
○ Also on blockchain

● Dispatch loop
○ Processing the queue sequentially
○ Executing code per message

Message queue

Dispatch loop

Actors run sequentially on the inside and concurrently on the outside

Asynchrony
Asynchronous programming can be mapped to actor communication

Async/Await Model Actor Model

Async function call Send

Async function execution Receive

Return from async function Send

await expression Receive

Used by Motoko, Rust, TypeScript for the IC

… B.increase();

Async Function Call

send

public func increase(): async Nat {
 …
}

Actor BActor A
increase

Async Function Execution

public func increase(): async Nat {
 counter += 1;
 return counter;
}

receive increase

… B.increase();

Async Function Return

public func increase(): async Nat {
 counter += 1;
 return counter;
}

send

Actor B

let future = B.increase();

Actor A

counter

Await Expression

public func increase(): async Nat {
 …
}

let future = B.increase();
…
let counter = await future;

counter
receive

Actor in Motoko

actor {

 stable var counter = 0;

 public func increase() : async Nat {

 counter += 1;

 return counter;

 };

};

Internal state

Callable from outside

Type system statically checks:
● Calls match function declaration
● Arguments & result are serializable

Canister in TypeScript
let counter: nat = 0;

export default Canister({

 increase: update([], nat, () => {

 counter++;

 return counter;

 })

 …

})

Internal state

Default call mode

Argument types

Return type

⚠ Function signature is checked at runtime
⚠ Arguments/result must be IC types

Canister State
State of actor/canister is stored on the blockchain
● Can have any object-oriented structure

class Website(url: Text) {

 var links: [Website] = [];

 public func addLink(to: Website) {

 links := Array.append(links, [to]);

 }

};

let a = Website("dfinity.org");

let b = Website("internetcomputer.org");

let c = Website("cysep.conf.kth.se");

a.addLink(b);

b.addLink(c);

c.addLink(a);

a b

c

Automatic reclamation of unreachable objects inside the actor

Garbage Collection

Motoko features a blockchain-optimized GC
L. Bläser, C. Russo, U. Degenbaev, Ö. S. Agaçan, G. Greif, and J. Ibrahim. Collecting Garbage on the Blockchain, VMIL, 2023.

Actor
field

Garbage

Alive

Transactions
Function calls run as transactions.

Call end and awaits denote commit points:
● Success: Apply all changes to blockchain
● Trap: Rollback all recent changes/effects

Transaction

State #0 State #1

Transaction

State #1Trap ->
Rollback

State #2

Transaction

Precondition Checking

if (price < minimumPrice()) {

 ic.trap("Price too low");

}

history.unshift(price);

Abort &
Rollback

Commit change
on call return

assert(price >= minimumPrice());

history := List.push(price, history);

Trap if
violated

Caller Identification
public shared (message) func check() : async () {

 let originator = message.caller;

 if (Principal.isAnonymous(originator)) {

 Debug.trap("Anonymous caller");

 };

 …

}; check: update([], Void, () => {

 let originator = ic.caller();

 if (originator.isAnonymous()) {

 ic.trap("Anonymous caller");

 }

 …

}

Principal is a public key
identifier of the caller, e.g.
un4fu-tqaaa-aaaab-qadjq-cai

Persistence and Upgrades
IC canisters and thus actors live conceptually perpetually
● State is automatically persisted across transactions

Special aspect: Upgrade
● Changing the program implementation
● Requires evolving the existing data

Without special attention,
state is discarded on program
change (upgrade).

Motoko: Orthogonal Persistence
actor {

 …

 type Auction = {

 id : AuctionId;

 item : Item;

 var bidHistory : List.List<Bid>;

 var remainingTime : Nat;

 };

 stable var auctions = List.nil<Auction>();

 stable var idCounter = 0;

 …

};

Survive upgrade to
future program version

Stable modifier should
become default in future

Stable Modifier
Everything transitively reachable from stable fields is upgraded:
● Motoko automatically transitions the stable sub-graph of the heap.
● Safety check: Ensures that data evolution is compatible.

Only certain types can be upgraded
● No function types

Other Languages: TypeScript, Rust, etc.
No support for orthogonal persistence across upgrades.

Need to store data explicitly in separate stable memory:
● Stable data structures
● See documentation

let map = StableBTreeMap<Key, Auction>(0);

Restricted to
serializable types

Safety for Blockchain Programming
Motoko:
● Memory safety (GC), static type safety, numeric safety
● Static checks include IC aspects (actor calls, persistence etc.)
● Capability system to mitigate supply chain attacks

Other languages:
● IC aspects are not statically checked (e.g. calls)
● Data can be corrupted with stable memory/data structures
● Rust: unsafe code, unchecked overflows in release mode,

memory leaks with cyclic reference counting
● Vulnerable to supply chain attacks (unrestricted IC API access)

Performance
IC usage is charged in terms of instructions and memory
● #Instructions per transaction is also limited (40 billion)

Auction with 1000 entries, each 100 bids, makeBid()

TypeScript Rust Motoko

Binary size 2.2 MB 690 KB 177 KB

Instructions 19_000_000 25_000 19_000

Memory 26 MB 12 MB 12 MB

Runtime
optimized for IC

Benefits of A Bespoke Language
Motoko offers advanced runtime supported tailored to the IC:
● Blockchain-optimized garbage collector
● Static checks of IC features
● Orthogonal persistence for upgrades
● Efficient (de)serialization driven by static types

→ This is not available in mainstream language implementations

Upcoming:
● Constant-time upgrade with 64-bit persistent main memory

https://github.com/dfinity/motoko/pull/4488

https://github.com/dfinity/motoko/pull/4488

Conclusion
The IC is a powerful runtime platform for secure distributed applications

Supports various programming languages:
● TypeScript, Motoko, Rust, and more

Motoko has been specifically designed for the IC:
● First-class support of IC-concepts
● Focus on safety, yet simple and expressive
● Efficient and advanced runtime mechanisms

Upcoming: IC Programming Workshop

Mini-Hackathon:
Developing an
Auction Platform on
the IC

Choose a language:
● Motoko
● TypeScript
● Rust

IC Blockchain Programming Workshop

https://github.com/luc-blaeser/auction

https://github.com/luc-blaeser/auction

Learn More
● Motoko Documentation:

https://internetcomputer.org/docs/current/motoko/main/motoko
● Motoko Open Source Repository:

https://github.com/dfinity/motoko

● TypeScript Development Kit for IC (Azle):
https://internetcomputer.org/docs/current/developer-docs/backend/typescript

● Rust Development Kit for IC:
https://internetcomputer.org/docs/current/developer-docs/backend/rust/

https://internetcomputer.org/docs/current/motoko/main/motoko
https://github.com/dfinity/motoko
https://internetcomputer.org/docs/current/developer-docs/backend/typescript
https://internetcomputer.org/docs/current/developer-docs/backend/rust/

Common Pitfalls
Using await carelessly Other async code can run in meantime at await. Beware of

race conditions!

Using normal variables for
canister state

Data will be lost on program version upgrade!
Motoko: Use stable modifier
Otherwise: Use stable data structures

Using query functions Requires a certified variable to be secure.
Otherwise: Use regular functions (“update” in TypeScript)

Transaction instruction limit Transaction runtime is limited, split into shorter running
functions or async / await sections

Public actor functions
without return type

One-way calls (“fire and forget”), no propagation of errors,
Motoko: specify return type async() and await

Appendix: Motoko Overview

Types

Primitive Bool, Nat, Int, Float, Text, Blob, …

Tuple (Nat, Text, Bool) (123, "Motoko", true)

Record { name: Text; year: Nat } { name="CySeP"; year=2023 }

Array [Nat] [1, 2, 3]

Option ?Bool null, ?true

Variant { #North; #South; #East; #West } #North

Function Int -> Bool func (x) { x % 2 == 0 }

Mutable State
Mutable fields/arrays must be explicitly declared as var

{

 name: Text;

 var year: Nat;

}

{

 name = "CySeP";

 var year = 2023;

}

[var Nat] [var 1, 2, 3]

Semantics

Value semantics (copying)
for primitive types

var x = 0;

let y = x;

x += 1;

Debug.print(debug_show(y));

// Output: 0

Reference semantics (sharing)
for composite types

let x = { var value = 0 };

let y = x;

x.value += 1;

Debug.print(debug_show(y));

// Output: {value = 1}

Like JavaScript and Java

Shareable Types = Serializable
Types that can be sent across actors:
● Primitive types
● Immutable composite types
● No var components
● No function types

Automatic serialization/deserialization to IC standard format (Candid)

For immutability: Reference semantics = Value semantics

Also shareable: Remote calls (“shared functions”), actor references

Structural Typing

Types are equal if
● They have the identical structure
● Fields can be reordered

type Photo = { pixels: Blob; metadata: Text; };

type Picture = { metadata: Text; pixels: Blob; };

// Photo and Picture are equal

Subtyping

Type T is compatible to U if
● They have identical structure, or
● Record T declares more fields than record U

type Work = { author: Text; };

type Picture = { author: Text; image: Blob; };

type Literature = { author: Text; content: Text; };

let book = { author = "Shakespeare"; content = "...to be or not to be..."};

// implicitly compatible to Literature and Work

Functions
public func translate(input: Text): async Text { … }

public func store(content: Blob): async () { … }

func max(x: Nat, y: Nat): Nat = x + y;

func printArray(array: [?Int]) { … }

Support both imperative and functional programming
● switch (with pattern matching), if-else
● if, while, loop, for, return
● function calls, await
● Local variables, local functions

Asynchronous Programming

Promise

Non-blocking
(continuation)

func test(): async Text {

 let future = B.increase();
 …
 let text = await future;

 return text;
}

Async call

func increase(): async Nat { … }

Async/Await Constructs
Similar to JavaScript, C#, or C++ 20

Function with an async return type
● Caller is not blocked during invocation
● Caller obtains a promise = handle for async function

await a promise
● Pause the current execution and let other code run
● Resume later when the function behind the promise has completed
● Obtain the result value of the awaited function

Imperative Programming

let array: [?Int] = …;

var sum = +0;

var gaps = false;

for (entry in array.vals()) {

 switch entry {

 case (?number) { sum += number };

 case null { gaps := true }

 }

};

Debug.print("Sum " # debug_show(sum) # " gaps: " # debug_show(gaps));

null test with
pattern matching

Iterator

Functional Programming
let (sum, gaps) = Array.foldLeft<?Int, (Int, Bool)>(

 array,

 (+0, false),

 func((leftSum, leftGaps), entry) {

 switch entry {

 case (?number) (leftSum + number, leftGaps);

 case null (leftSum, true);

 };

 }

);

Debug.print("Sum " # debug_show (sum) # " gaps: " # debug_show (gaps));

Anonymous function (lambda)

Stable types
(persistent across upgrades)

Type Categories

Shared types
(serializable)

All types

Function types

Mutable
records

Mutable
arrays

Modules
Set of functionality that can be imported to actors and other modules.

Base library modules:

"mo:base/Timer" One-shot or periodic time events

"mo:base/Principal" Authentication (Internet Identity)

"mo:base/Debug" Debug output, raising errors (traps)

"mo:base/List" List data structure (stable type)

…

