DFINITY

Motoko

PN
A Programming Language Designed for Secure Smart <

~ Contract PW\%\

I
Luc Blaser v

//\
CySeP Summer School, Stockholm, June 13, 2025
% \\/ ///\\

Rethinking the Software Stack for Security

Smart Contract / dApp
oo @
Web Assembly m
Internet Computer x

The Motoko Programming Language

Designed for secure and productive development on the Internet Computer

Canisters by language

Unique Total

@ Motoko (docs): 10'300 60'580

Released in 2019

& Rust (docs): 1077 233'216 _
Team of 6 engineers

JS/TS (Azle): 186 192

@ C++ (icpp-pro): 19 45
@ python (Kybra): 12

Unknown: 349'542

Source: icp.zone

Program component]

A First Glance /

persistent actor {

[Automatic type Price = Nat;

persistence

var history = List.empty<Price>();

public func makeBid(price : Price) : async () { AP for frontend]

let minimumPrice = switch (List.last(history)) {
case null 1;)
case (?lastBid) lastBid + 1; —==:::{ Funcnonalﬂavor]
}

assert(price >= minimumPrice);

List.add(history, price); _
<[Imperative flavor]

s

How the Programming Language Impacts Security

Less code

\/
Less bugs More guards

S

Less vulnerabilities

Motoko’s Design Philosophy

Few but powerful Static checks as Security-centered
concepts much as possible features

Learning Goals

Talk:

e Understand how language design can impact security
e Get an overview of Motoko and its bespoke security-centered concepts

Workshop:

e Experience programming in Motoko on the Internet Computer
e Harden the security of a simple decentralized app

Looking At

1. Inherent
distributability

2. Automatic
persistence

3. Garbage
collection

1. Inherent Distributability

Motoko is built of actors that

e carry their encapsulated state 7/ No shared state
e run concurrently to each other v Asynchronous
e communicate by message passing

Q message Q

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI. 1973.

Motoko Actor

persistent actor {

Encapsulated }
var history = List.empty<Price>(); state

public func makeBid(price : Price) : async () { Triggered on
message receive

s

public func lastBid() : async Price {

Compiler checks public actor functions:

b Result is sent back) :;/IUSt betasync lizabl
) as message - arameters are serializable

- Result is serializable

Seamless Integration to the IC

The software components of the IC are canisters:

e A canister is also an actor
e Motoko actor can also instantiate new actors

Message encoding:

e Standard format on the IC: Candid
e Automatic encoding/decoding by Motoko

— |C model is language-inbuilt and compile-checked

2. Automatic Persistence

persistent actor {
type Item = {
description : Text;
image : Blob;
}
type Auction = {
item : Item;
bidHistory : List.List<Bid>;
}

let auctions = Map.empty<AuctionId, Auction>();

s

State is automatically retained
— No database

— No files

— No storage API

Called orthogonal persistence

L. Blaser, C. Russo et al. Smarter Contract Upgrades with Orthogonal Persistence. VMIL 2024.

https://dl.acm.org/doi/10.1145/3689490.3690401

Program Evolution

Data migration when changing program

e Automatic migration for defined changes
o Add actor variables, add options, Nat -> Int, ...

e Custom migration logic for complex changes

(with migration = convert)

persistent actor {

with convert(old: 0OldActor) : NewActor { .. } }

— Static check of migration compatibility

Transitive Persistence

Persistent
objects

normal
variable

Persistent
Actor

transient

persistent actor Graph { _
variable

type Node = { Garbage

var edges: [Node]; Transient

’i objects
var start: Node = .;

transient var temporary : Node = ..;

|2

Garbage Collection

Automatic reclamation of unreachable objects (=garbage) inside the actor

Persistent
root

Transient
root

Garbage

Motoko’s Incremental Garbage Collection

Short bounded interruptions to fit in blockchain transaction

Compacting memory for preventing memory fragmentation
User program
Transaction

GC increment

L. Blaser, C. Russo et al. Collecting Garbage on the Blockchain. VMIL 2023.

https://dl.acm.org/doi/10.1145/3689490.3690401

Looking At

Simplicity Safety

1. Type safety
2. Memory safety
3. Arithmetic safety

1. Type Safety

Compile-time checks:

o ClassC xception

e Types inside and across actors
e No dynamic subtype casts

e No null p0|rl1’Fer exceptions NullPoi ception

e All IC-specific aspects

Canister ... tra explicitly:

— No escape hatches Fail to decpe€ argument ...

KN

— No runtime type errors

Null Deref Prevention

Explicit use of optional type =" = -]

func getLastBid() : ?Bid { .. };

Requires explicit matching and handling of null

let minimumPrice = switch (getLastBid()) {
case null 1;

case (?lastBid) lastBid.price + 1;

Exhaustive pattern
matching (static check)

2. Memory Safety

Managed runtime

e Garbage collection
e No unsafe raw accesses

No raw secondary storage

e Orthogonal persistence
e Checked migration compatibility

Risks without Garbage Collection

Dangling Pointer

deleted

C++, unsafe code,
raw memory

Heap Fragmentation

Memory Leak

. RC =1

Cyclic ,/
& reference /

counting & .
R(S =1 RC“= 1

C++, Rust

Alloc - &Outofmem

Rust, C++, QuickJS

3. Arithmetic Safety

Unbounded integers by default
e Nat, Int
Overflow checks always on

e Nat subtraction
e Bounded integers

No implicit conversions

Motoko: Always
Precise

V

balance += amount;

|

TypeScript number:
Precision loss

Rust: Silent Overflow
in Release

|

A

A

Looking At

1. Capabilities
2. Authentication
3. Authorization

1. Capabilities

e Critical functions require higher privilege
e Privilege must be propagated along call chain

Caller must have
this capability

module {
public func standingOrder<system>() {
ignore Timer.recurringTimer<system>(#days 1, sendMoney) ;
° }
yi [Requires system

capability

1. Capabilities

Prevent supply chain attacks

e Risky library are clearly marked
e Caller must explicitly allow and have capability

Other languages

e Library canissue any IC call 2
e Rust: Unsafe code can be hidden in safe code

2. Authentication

Dedicated type for
user or actor id

var users = Set.empty<Principal>();

public shared (message) func register() : async () {

let originator = message.caller; Public key identifier of caller, e.g.
if (Principal.isAnonymous(originator)) { un4fu-tgaaa-aaaab-gadjqg-cai

Runtime.trap("Anonymous caller");

}

Set.add(users, Principal.compare, originator);

3. Authorization

Trap if
violated
assert(price >= minimumPrice); List.add(history, price);
List.add(history, price); <j:::::3> assert(price >= minimumPrice);
equivalent

Traps rolls back all changes/effects up to start of public function
(or up to last await point)

Conclusion

Security needs to cover the entire software vertical
e The programming language plays a crucial role
Bespoke language design can severely boost security

e Simplicity: Abstractions covering application needs
e Safety: Static type checks, rigorous memory safety
e Protections: Language-inbuilt security concepts

Upcoming Workshop: Smart Contract Programming

Motoko Auction Platform

Motoko Auction

Motoko backend for auction platform:

e Auction bidding
e User authorization ‘

e Auction invariants

Bonus:
e Unpredictable auction ids e
e Compare to other languages) G

(Rust and/or TypeScript)

Motoko Workshop

https://qgithub.com/luc-blaeser/auction

https://github.com/luc-blaeser/auction

Learn More

e Motoko Programming Language:
https://internetcomputer.org/docs/current/motoko/main/motoko

e Motoko New Base Library:
https://dfinity.qithub.io/new-motoko-base

e Motoko Open Source Repository:
https://github.com/dfinity/motoko

https://internetcomputer.org/docs/current/motoko/main/motoko
https://dfinity.github.io/new-motoko-base/
https://github.com/dfinity/motoko

Research Papers

[1] L. Blaser, C. Russo et al. 2024. Smarter Contract Upgrades with Orthogonal
Persistence. VMIL 2024. https://doi.org/10.1145/3689490.3690401

[2] L. Blaser, C. Russo, U. Degenbaev et al. Collecting Garbage on the
Blockchain. VMIL 2023. https://doi.org/10.1145/3623507.3627672

https://doi.org/10.1145/3689490.3690401
https://doi.org/10.1145/3623507.3627672

o0

DFINITY

Appendix: Motoko Overview

Types

Primitive Bool, Nat, Int, Float, Text, Blob,

Tuple (Nat, Text, Bool) (123, "Motoko", true)
Record { name: Text; year: Nat } { name="CySeP"; year=2025 }
Array [Nat] [1, 2, 3]

Option ?Bool null, ?true

Variant { #North; #South; #East; #West } #North

Function Int -> Bool func (x) { x % 2 ==0 }

Mutable State

Mutable fields/arrays must be explicitly declared as var

{ {

name: Text; name = "CySeP";
var year: Nat; var year = 2025;
} }

[var Nat] [var 1, 2, 3]

Semantics

Value semantics (copying) Reference semantics (sharing)
for primitive types for composite types

var x = 9- let x = { var value = 0 };

let y = x; let y = x;

X += 1: Xx.value += 1;
Debug.print(debug_show(y)); Debug.print(debug_show(y));

// Output: © // Output: {value = 1}

Like JavaScript and Java

Shareable Types = Serializable

Types that can be sent across actors:

Primitive types

Immutable composite types
No var components

No function types

Automatic serialization/deserialization to IC standard format (Candid)
For immutability: Reference semantics = Value semantics

Also shareable: Remote calls (“shared functions™), actor references

Structural Typing

Types are equal if

e They have the identical structure
e Fields can be reordered

type Photo = { pixels: Blob; metadata: Text; };
type Picture = { metadata: Text; pixels: Blob; };

// Photo and Picture are equal

Subtyping
Type T is compatible to U if

e They have identical structure, or
e Record T declares more fields than record U

type Work = { author: Text; };
type Picture = { author: Text; image: Blob; };

type Literature = { author: Text; content: Text; };

let book = { author = "Shakespeare"; content = "...to be or not to be..."};

// implicitly compatible to Literature and Work

Functions

public func translate(input: Text): async Text { ..}
public func store(content: Blob): async () { .. }
func max(x: Nat, y: Nat): Nat = x + y;

func printArray(array: [?Int]) { ..}

Support both imperative and functional programming

switch (with pattern matching), if-else
if, while, loop, for, return

function calls, await

Local variables, local functions

Asynchronous Programming

func test(): async Text {

[Promise J Iet future = B.increase();

AsynccaH}

let text = await future;

return text,;

}

Non-blocking
(continuation)

func increase(): async Nat { .. }

Async/Await Constructs

Similar to JavaScript, C#, or C++ 20
Function with an async return type

e Caller is not blocked during invocation
e Caller obtains a promise = handle for async function

await a promise

e Pause the current execution and let other code run

e Resume later when the function behind the promise has completed
e Obtain the result value of the awaited function

Imperative Programming

let array: [?Int] = .;

var sum = +0;
var gaps = false;

for (entry in array.vals()) { null test with }

switch entry { pattern matching

case (?number) { sum += number };

case null { gaps := true }

¥
Debug.print("Sum

debug_show(sum) # " gaps: " # debug_show(gaps));

Functional Programming

let (sum, gaps) = Array.foldLeft<?Int, (Int, Bool)>(
array,
(+0, false),
func((leftSum, leftGaps), entry) {
switch entry {
case (?number) (leftSum + number, leftGaps);

Anonymous function (lambda)
case null (leftSum, true);

s

)
Debug.print("Sum " # debug_show (sum) # " gaps:

debug_show (gaps));

Type Categories

All types

Function types

Stable types
(persistent across upgrades)

Mutable
arrays

Mutable
records

Shared types
(serializable)

Modules

Set of functionality that can be imported to actors and other modules.

Base library modules (new version):

IImO

:new-base/Principal”

Authentication (Internet Identity)

IImO

:new-base/Runtime”

Raising errors (traps)

IImO

:new-base/List"

List data structure

IImO

:new-base/Map"”

Key-value map data structure

IImO

:new-base/Set"

Set data structure

Known Pitfalls

Using await carelessly

Other async code can run in meantime at await. Beware of
race conditions!

Forgetting persistent
modifier

Variable state will be lost on program version upgrade (unless
declared stable)!

Using query functions

Requires a certified variable to be secure. Or needs to be
called as replicated query.

Public actor functions
without return type

One-way calls (“fire and forget”), no propagation of errors.
Specify return type async () and await.

Working on improving this

