
Motoko
A Programming Language Designed for Secure Smart 
Contract Programming

Luc Bläser
CySeP Summer School, Stockholm, June 13, 2025



Rethinking the Software Stack for Security

Operating System

Programming 
Language

Software 
Application

Computer Machine

Smart Contract / dApp

Motoko

Web Assembly

Internet Computer



The Motoko Programming Language

Source: icp.zone

Designed for secure and productive development on the Internet Computer

Released in 2019
Team of 6 engineers



A First Glance
persistent actor {

   type Price = Nat;

   var history = List.empty<Price>();

   public func makeBid(price : Price) : async () {

       let minimumPrice = switch (List.last(history)) {

           case null 1;

           case (?lastBid) lastBid + 1;

       };

       assert(price >= minimumPrice);

       List.add(history, price);

   };

   …

};

Program component

API for frontend

Automatic 
persistence

Functional flavor

Imperative flavor



How the Programming Language Impacts Security

Less code

Less bugs More guards

Simplicity Safety Protections

Less vulnerabilities



Motoko’s Design Philosophy

Few but powerful 
concepts

Static checks as 
much as possible

Security-centered 
features

Simplicity Safety Protections



Learning Goals
Talk:

● Understand how language design can impact security
● Get an overview of Motoko and its bespoke security-centered concepts

Workshop:

● Experience programming in Motoko on the Internet Computer
● Harden the security of a simple decentralized app



Looking At

1. Inherent 
distributability

2. Automatic 
persistence

3. Garbage 
collection

Simplicity Safety Protections



1. Inherent Distributability
Motoko is built of actors that

● carry their encapsulated state
● run concurrently to each other
● communicate by message passing

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI. 1973.

message

✓ No shared state
✓ Asynchronous



Motoko Actor

persistent actor {

   …

   var history = List.empty<Price>();

   public func makeBid(price : Price) : async () {

       …

   };

   public func lastBid() : async Price {

       …

   };

};

Encapsulated 
state

Triggered on 
message receive

Result is sent back 
as message

Compiler checks public actor functions:
- Must be async
- Parameters are serializable
- Result is serializable



The software components of the IC are canisters:

● A canister is also an actor
● Motoko actor can also instantiate new actors

Message encoding:

● Standard format on the IC: Candid
● Automatic encoding/decoding by Motoko

→ IC model is language-inbuilt and compile-checked

Seamless Integration to the IC



2. Automatic Persistence

L. Bläser, C. Russo et al. Smarter Contract Upgrades with Orthogonal Persistence. VMIL 2024.

persistent actor {

  type Item = {

    description : Text;

    image : Blob;

  };

  type Auction = {

    item : Item;

    bidHistory : List.List<Bid>;

  };

  …

  let auctions = Map.empty<AuctionId, Auction>();

};

State is automatically retained 
→ No database
→ No files
→ No storage API

Called orthogonal persistence

https://dl.acm.org/doi/10.1145/3689490.3690401


Data migration when changing program

● Automatic migration for defined changes
○ Add actor variables, add options, Nat -> Int, …

● Custom migration logic for complex changes

Program Evolution

(with migration = convert)

persistent actor {

  …

}; with convert(old: OldActor) : NewActor { … }

→ Static check of migration compatibility



Transitive Persistence

Persistent
Actor

normal
variable

transient 
variable

Persistent 
objects

Transient 
objects

Garbage

persistent actor Graph {

 type Node = {

   var edges: [Node];

 };

 var start: Node = …;

 transient var temporary : Node = …;

};



Automatic reclamation of unreachable objects (=garbage) inside the actor

Garbage Collection

Persistent 
root

Transient 
root

Alive

Alive
Garbage



Short bounded interruptions to fit in blockchain transaction

Compacting memory for preventing memory fragmentation

Motoko’s Incremental Garbage Collection

GC increment

User program
Transaction 
sequence

L. Bläser, C. Russo et al. Collecting Garbage on the Blockchain. VMIL 2023.

https://dl.acm.org/doi/10.1145/3689490.3690401


Looking At

1. Type safety
2. Memory safety
3. Arithmetic safety

Simplicity Safety Protections



Compile-time checks:

● Types inside and across actors
● No dynamic subtype casts
● No null pointer exceptions
● All IC-specific aspects

1. Type Safety

→ No escape hatches

→ No runtime type errors

NullPointerException

ClassCastException

Canister ... trapped explicitly: 
Fail to decode argument …



Null Deref Prevention
Explicit use of optional type 

func getLastBid() : ?Bid { … };

Requires explicit matching and handling of null

let minimumPrice = switch (getLastBid()) {

 case null 1;

 case (?lastBid) lastBid.price + 1;

};

Exhaustive pattern 
matching (static check)

Option type



2. Memory Safety
Managed runtime

● Garbage collection
● No unsafe raw accesses

No raw secondary storage

● Orthogonal persistence
● Checked migration compatibility



Risks without Garbage Collection

deleted

Cyclic 
reference 
counting

RC = 1

RC = 1 RC = 1

Alloc Out of mem

Dangling Pointer Memory Leak

Heap Fragmentation

C++, Rust
C++, unsafe code, 

raw memory

Rust, C++, QuickJS



3. Arithmetic Safety
Unbounded integers by default

● Nat, Int

Overflow checks always on

● Nat subtraction
● Bounded integers

No implicit conversions

balance += amount;

Motoko: Always 
Precise

Rust: Silent Overflow 
in Release

TypeScript number:
Precision loss



Looking At

1. Capabilities
2. Authentication
3. Authorization

Simplicity Safety Protections



1. Capabilities
● Critical functions require higher privilege
● Privilege must be propagated along call chain

●

module {

 public func standingOrder<system>() {

   ignore Timer.recurringTimer<system>(#days 1, sendMoney);

 };

}; Requires system 
capability

Caller must have 
this capability



1. Capabilities
Prevent supply chain attacks

● Risky library are clearly marked
● Caller must explicitly allow and have capability

Other languages

● Library can issue any IC call
● Rust: Unsafe code can be hidden in safe code



var users = Set.empty<Principal>();

 

public shared (message) func register() : async () {

   let originator = message.caller;

   if (Principal.isAnonymous(originator)) {

     Runtime.trap("Anonymous caller");

   }

   Set.add(users, Principal.compare, originator);

};

2. Authentication
Dedicated type for 

user or actor id

Public key identifier of caller, e.g.
un4fu-tqaaa-aaaab-qadjq-cai



3. Authorization

assert(price >= minimumPrice);

List.add(history, price);

Trap if 
violated

Traps rolls back all changes/effects up to start of public function
(or up to last await point)

List.add(history, price);

assert(price >= minimumPrice);

equivalent



Conclusion
Security needs to cover the entire software vertical

● The programming language plays a crucial role

Bespoke language design can severely boost security

● Simplicity: Abstractions covering application needs
● Safety: Static type checks, rigorous memory safety
● Protections: Language-inbuilt security concepts



Upcoming Workshop: Smart Contract Programming

Motoko backend for auction platform:
● Auction bidding
● User authorization
● Auction invariants

Bonus:
● Unpredictable auction ids
● Compare to other languages

(Rust and/or TypeScript)



Motoko Workshop

https://github.com/luc-blaeser/auction 

https://github.com/luc-blaeser/auction


Learn More
● Motoko Programming Language: 

https://internetcomputer.org/docs/current/motoko/main/motoko

● Motoko New Base Library:
https://dfinity.github.io/new-motoko-base 

● Motoko Open Source Repository:
https://github.com/dfinity/motoko

https://internetcomputer.org/docs/current/motoko/main/motoko
https://dfinity.github.io/new-motoko-base/
https://github.com/dfinity/motoko


Research Papers
[1] L. Bläser, C. Russo et al. 2024. Smarter Contract Upgrades with Orthogonal 

Persistence. VMIL 2024. https://doi.org/10.1145/3689490.3690401

[2] L. Bläser, C. Russo, U. Degenbaev et al. Collecting Garbage on the 
Blockchain. VMIL 2023. https://doi.org/10.1145/3623507.3627672 

https://doi.org/10.1145/3689490.3690401
https://doi.org/10.1145/3623507.3627672


Appendix: Motoko Overview



Types

Primitive Bool, Nat, Int, Float, Text, Blob, …

Tuple (Nat, Text, Bool) (123, "Motoko", true)

Record { name: Text; year: Nat } { name="CySeP"; year=2025 }

Array [Nat] [1, 2, 3]

Option ?Bool null, ?true

Variant { #North; #South; #East; #West } #North

Function Int -> Bool func (x) { x % 2 == 0 }



Mutable State
Mutable fields/arrays must be explicitly declared as var

{

 name: Text;

 var year: Nat;

}

{

 name = "CySeP";

 var year = 2025;

}

[var Nat] [var 1, 2, 3]



Semantics

Value semantics (copying)
for primitive types

var x = 0;

let y = x;

x += 1;

Debug.print(debug_show(y));

// Output: 0

Reference semantics (sharing)
for composite types

let x = { var value = 0 };

let y = x;

x.value += 1;

Debug.print(debug_show(y));

// Output: {value = 1}

Like JavaScript and Java



Shareable Types = Serializable
Types that can be sent across actors:

● Primitive types
● Immutable composite types
● No var components
● No function types

Automatic serialization/deserialization to IC standard format (Candid)

For immutability: Reference semantics = Value semantics

Also shareable: Remote calls (“shared functions”), actor references



Structural Typing

Types are equal if

● They have the identical structure
● Fields can be reordered

type Photo = { pixels: Blob; metadata: Text; };

type Picture = { metadata: Text; pixels: Blob; };

// Photo and Picture are equal



Subtyping

Type T is compatible to U if

● They have identical structure, or
● Record T declares more fields than record U

type Work = { author: Text; };

type Picture = { author: Text; image: Blob; };

type Literature = { author: Text; content: Text; };

let book = { author = "Shakespeare"; content = "...to be or not to be..."};

// implicitly compatible to Literature and Work



Functions
public func translate(input: Text): async Text { … }

public func store(content: Blob): async () { … }

func max(x: Nat, y: Nat): Nat = x + y;

func printArray(array: [?Int]) { … }

Support both imperative and functional programming

● switch (with pattern matching), if-else
● if, while, loop, for, return
● function calls, await
● Local variables, local functions



Asynchronous Programming

Promise

Non-blocking
(continuation)

func test(): async Text {

  let future = B.increase();
  …
  let text = await future;

  return text;
}

Async call 

func increase(): async Nat { … }



Async/Await Constructs
Similar to JavaScript, C#, or C++ 20

Function with an async return type

● Caller is not blocked during invocation
● Caller obtains a promise = handle for async function

await a promise

● Pause the current execution and let other code run
● Resume later when the function behind the promise has completed
● Obtain the result value of the awaited function



Imperative Programming

let array: [?Int] = …;

var sum = +0;

var gaps = false;

for (entry in array.vals()) {

    switch entry {

        case (?number) { sum += number };

        case null { gaps := true }

    }

};

Debug.print("Sum " # debug_show(sum) # " gaps: " # debug_show(gaps));

null test with 
pattern matching

Iterator



Functional Programming
let (sum, gaps) = Array.foldLeft<?Int, (Int, Bool)>(

   array, 

   (+0, false), 

   func((leftSum, leftGaps), entry) {

       switch entry {

           case (?number) (leftSum + number, leftGaps);

           case null (leftSum, true);

       };

   }

);

Debug.print("Sum " # debug_show (sum) # " gaps: " # debug_show (gaps));

Anonymous function (lambda)



Stable types
(persistent across upgrades)

Type Categories

Shared types
(serializable)

All types

Function types

Mutable 
records

Mutable 
arrays



Modules
Set of functionality that can be imported to actors and other modules.

Base library modules (new version):

"mo:new-base/Principal" Authentication (Internet Identity)

"mo:new-base/Runtime" Raising errors (traps)

"mo:new-base/List" List data structure

"mo:new-base/Map" Key-value map data structure

"mo:new-base/Set" Set data structure

…



Known Pitfalls

Using await carelessly Other async code can run in meantime at await. Beware of 
race conditions!

Forgetting persistent 
modifier

Variable state will be lost on program version upgrade (unless 
declared stable)!

Using query functions Requires a certified variable to be secure. Or needs to be 
called as replicated query.

Public actor functions 
without return type

One-way calls (“fire and forget”), no propagation of errors. 
Specify return type async() and await.

Working on improving this


