
Language and Runtime Innovations

for Local and Distributed Parallelization

Luc Bläser

HSR Hochschule für Technik Rapperswil

lblaeser@hsr.ch

Modeling and Simulation Seminar

Chair of Sociology , ETH Zurich, 8 Apr 2013

Personal Research Overview

• Structured concurrency with Composita

– A new programming language and runtime system

with application to agent simulation

• Seamless distributed task parallelization

– A runtime system extension for .NET for seamless

distribution of parallel code onto HPC clusters

2

Structured Concurrency with Composita

Overview

3

Composita

• A new programming language
– Hierarchical und well-structured components

– Inherent and safe concurrency

• Traffic simulation as application study
– Simulation is a predestined case for new languages

• SIMULA: Birth of object-orientation motivated by simulations

– Goals
• Natural simulation modeling

• High expressiveness

• Reasonable performance

4

Motivation

Problems of mainstream object-oriented languages

• References

– Flat object structures without explicit hierarchies

– Intended encapsulation is not guaranteed

• Inheritance

– Forced combination of polymorphism and reuse

– Limited single inheritance or multi-inheritance conflicts

• Concurrency

– Unnecessarily blocking interactions via method calls

– Threads operate on passive objects without proper control

5

Components in Composita

• General abstraction unit at runtime

– Subjects (e.g. “person”), active objects (e.g. “car”),

passive objects (e.g. “road”), abstract notions (e.g. “route”)

• Strict encapsulation

– External dependencies only allowed via explicit interfaces

• Component can offer and require interfaces

– Offered interfaces represent own external facets of a component

– Required interfaces are to be provided by other components

• Multi-instantiation from a component template

COMPONENT Car

OFFERS Vehicle, LuggageSpace

REQUIRES Road, Radio

(* implementation *)

END Car

Car

Vehicle

Luggage-

Space

Road

Radio

6

Hierarchical Composition

• A component can contain an arbitrary number of
subcomponents

COMPONENT RoadNetwork OFFERS Road;

VARIABLE link[id: INTEGER]: ANY(Link);

BEGIN

FOREACH link id in simulation file DO

NEW(link[id], SingleLaneLink)

END

END RoadNetwork;

Dynamic collection of

subcomponents

Arbitrary type with

postulated interfaces

Component

template

RoadNetwork

...

Road

Single-

LaneLink

Link

Single-

LaneLink

Link
Encapsulated

subcomponents

7

Interface Connections

• Each required interface can be connected to an offered
interface with the same name

COMPONENT TrafficSimulation;

VARIABLE

car[id: INTEGER]: Car;

road: RoadNetwork

BEGIN

NEW(road);

FOREACH car id in simulation file DO

NEW(car[id]);

CONNECT(Road(car[id]), road)

END

END TrafficSimulation;
RoadNetwork

Road

Car

RoadVehicle

... Car

RoadVehicle

No ordinary pointers

• Connections are exclusively set by the surrounding component

• Outgoing and incoming interface points explicitly defined per
component

COM-artiges

Wiring

8

Memory Management

• Hierarchy of component networks
– Network structure is exclusively

governed by surrounding component

• Hierarchical existence
dependencies
– Deletion of a component => Automatic

deletion of subcomponents

– Explicit deletion of a component =>
interfaces become disconnected in a
controlled way

– Memory safety without garbage
collection (no low-level dangling
pointers or memory leaks)

Simulation

...

RoadNetwork

...Link Link

Car

Planner

Car

Planner

Simulation

...

RoadNetwork

...Link Link

Car

Planner

DELETE(car[n])

9

Concurrency and Interactions

• Each component runs its own inner light-weight
processes

• Components interact only by way of communication
over interfaces

RoadNetwork

Road

Car Car

Inner

process

communication
All cars run in parallel and

interact autonomously with

the road

Supports individual separate

communication per vehicle 10

Communication

• Separate communication between each client and server

• Sending and receiving messages according to a formal

protocol

Communication

protocol in EBNF

Client

Car

RoadNetwork

Server

Road

INTERFACE Road;

IN Start

{

IN Drive(linkId: INTEGER)

OUT Decide(time: INTEGER)

}

IN Stop

END Road;

Prepare Drive

Decide

Arbitrary

repetition

Stop

Message sequence:

repetition

11

Component Implementations

COMPONENT Car (* … *) REQUIRES Road;

BEGIN

Road!Start;

WHILE target not reached DO

Road!Drive(nextLinkId); Road?Decide(time)

END;

Road!Stop

END Car;

COMPONENT RoadNetwork OFFERS Road;

IMPLEMENTATION Road;

BEGIN

?Start;

WHILE ?Drive DO

?Drive(linkId); (* drive *) !Decide(now)

END;

?Stop

END Road;

END RoadNetwork;

Car

RoadNetwork

Road

Send message

Receive message

Receival test

Separate service

process per client

12

Runtime System

A small operating system for scalable efficient concurrency

• Light-weight processes

– Dynamic micro stacks

– Enables huge amount of processes

• Fast context switches

– Direct synchronous switches

– Preemption with code instrumentation

• Inbuilt synchronization

– Protocol-based communication

– System-managed monitors

• Efficient memory management

– Hierarchical memory management

– No virtual memory management

13

Scaling and Performance

Component OS Windows .NET Windows JVM Active Oberon

5,010,000 1,890 10,000 15,700

• Maximum number of threads / light weight-processes

Program (sec) Component OS C# Java Oberon AOS

ProducerCons. 16 19 130 60

Eratosthenes 1.8 6.8 4.6 5.8

TokenRing 2.1 22 22 18

4GB main memory

• Execution performance

6 CPUs Intel Xeon 700MHz

14

Traffic Simulation Study (with TU Berlin)

Developed in the new language

• Self-active cars

– All cars drive autonomously and concurrently

– No explicit program loop, centrally controlling the car movements

– No explicit parking and waiting queues

• Virtual time

– Virtual time corresponds to the time in the simulated world

– All cars run with a synchronous virtual time

• Individual planning and learning

– Drivers plan their journey, route and departure time individually

– Each driver thereby considers their own experience of previous

journeys (traffic delays)

15

A Simplified Road Link

COMPONENT SingleLaneLink OFFERS Link;

VARIABLE occupied[cell: INTEGER]: BOOLEAN;

IMPLEMENTATION Link;

VARIABLE cell: INTEGER;

BEGIN {EXCLUSIVE}

AWAIT(~occupied[0]); occupied[0] := TRUE;

!Entered; PASSIVATE(1); cell := 0;

WHILE cell < length DO

AWAIT(~occupied[cell + 1]);

occupied[cell + 1] := TRUE;

occupied[cell] := FALSE;

INC(cell);

PASSIVATE(1)

END;

!EndReached;

occupied[exit] := FALSE

END Link;

END SingleLaneLink;

Monitor lock

Autonomous driving process per car on link

Wait for next free cell

Wait a virtual second

Cellular automaton

AWAIT & PASSIVATE temporarily

release monitor lock

16

Runtime Performance

Zurich traffic

simulation

(in minutes)

Composita

(concurrent,

virtual clock)

C++

(sequential time-

sliced)

C#

(multi-threaded,

virtual clock)

1,000 cars 0.04 140 33

10,000 cars 0.6 140 out of memory

100,000 cars 13 190 out of memory

260,000 cars 76 210 out of memory

6 CPUs Intel Xeon 700MHz

Analogous model but

threads not designed

for large scale

Different simulation

model!

Scales with amount of

concurrent cars & traffic jam

Scales with length of road

& time slices

17

Conclusions

• Natural simulation description
– Autonomous driving behavior per car

– Cars run in parallel

– Driving based on a virtual clock

– Individual planning an learning

– Abandoned artifacts
• Explicit park and wait queues

• Global program loop for discrete event queue / time-slices

• Centralized event recording and planning

• Flexible programming
– Components could be programmed a simple and compact manner

– New structures able to seamlessly replace ordinary
references/pointers

• Good execution performance
– In our case: Faster than analogous multi-threading and sequential

time-sliced simulation

18

Seamless Distributed Task Parallelization

Overview

(ongoing project)

19

Goal: Parallelization in the Cloud

• Embed remote computing power locally

– Massive parallelization in the cloud

– E.g. on cluster with many multi-core nodes

• As seamless and simple as possible

– Same programming model as on local cores

– No explicit transmission or remote code needed

Client Compute

Node

Compute

Node

Compute

Node

Cluster

Cloud

20

Cloud Task Parallelization in .NET

• Program parallel tasks in.NET

• Automatic deployment and execution in cloud

21

Classical .NET Task Parallelization

Factorize multiple numbers in parallel

var taskList = new List<Task<long>>();
foreach (long number in inputs) {
var task = Task.Factory.StartNew(() => {
return _Factorize(number);

});
taskList.Add(task);

}

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

long _Factorize(long number) {
for (long k = 2; k <= Math.Sqrt(number); k++) {
if (number % k == 0) { return k; }

}
return number;
}

Start task

Await task

completion

Task delegate

(lambda)

22

New Cloud Task Parallelization

var distribution = new Distribution(ServiceUri, Authorization);

var taskList = new List<DistributedTask<long>>();
foreach (long number in inputs) {
var task = DistributedTask.New(() => {

return _Factorize(number);
});
taskList.Add(task);

}

distribution.Start(taskList);

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

Denote service

Create task

Start multiple

tasks in a bunch

Analogous to classical tasks

Reference library : HSR.CloudTaskParallelism.Client.Runtime 23

Data Parallelism

Parallel.For(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

Classical .NET Parallelization

New Cloud Task Parallelization

24

Distributed Tasks

• Very similar to classical local tasks

– Import of a library: no compilation step needed

• Bundled task start

– Minimization of network roundtrips

• Task as a .NET delegate/lambda

– General programming model

• Tasks need to be independent / isolated

– Accesses on disjoint fields/array elements - except

read-only accesses

– Write/write conflicts detected by runtime system

25

Runtime System

26

Performance Scaling

Prime factorization

Client and service: Intel 2 Core, 2.9 GHz

MS HPC 2008, 32 Nodes Intel Xeon 12 Core 2.6GHz

Network delay: 1ms, throughput 100 Mbit/sec 27

Performance Cost Amounts

Seconds

Prime factorization (100 numbers)

28

Performance Discussion

• Speedup

– High speedup by many powerful cores

• Overheads

– Communication between client and backend

• Throughput (data amount) und latency (network distance)

– Task serialization / deserialization

– Dispatching of HPC cluster jobs

• Parallelization needs to compensate overheads

– Large amount of tasks

– Compute-intense tasks

– Tasks with little data traffic

29

Conclusions

• Seamless distributed task parallelization in .NET

– Programming model equivalent to local tasks

– Illusion of shared memory model despite distribution

– No explicit development of remote code

– No explicit transmission or communication

– Write/write conflict detection for additional safety

30

Many thanks for your interest!

Questions?

