
Practical Detection of Concurrency
Issues at Coding Time

Luc Bläser

Hochschule für Technik Rapperswil
Switzerland

ISSTA 2018
17 July 2018, Amsterdam

Motivation

Detect concurrency errors in the IDE

▪ Interactively mark issues during coding

▪ Primary focus on data races

Requirements

▪ Static: Analyze source code, even if not compileable

▪ Fast: Quick feedbacks within a few seconds

▪ Precise: As few false warnings as possible

2

Compromise: We may miss issues (incompleteness)

HSR Parallel Checker

▪ New static checker tool for Visual Studio IDE

▪ For latest C#, covering wide concurrency spectrum

□ Tasks, async/await, parallel loops, various sync. constructs,
atomics, volatile, finalizers, timers, parallel queries …

□ UI-apps/libraries/unit tests/console-apps

▪ Downloadable on Visual Studio Marketplace
(>2.5k installs)

3

Brief Demo

4

Approach

Randomized mostly-concrete
interpretation

▪ Map code to internal runtime model

▪ Simulate execution on this model

▪ Maintain exact state where possible

▪ Repeated random scheduling

▪ Per-run and overall bound

▪ Report encountered issues

▪ Vector clock for race detection

5

Initialize model

first run

Pick random

runnable thread

Simulate

instruction

Per-run

bound?
NO

Overall

bound?

NO

YES

YES

next run

Report issues

Particular Aspects

▪ Reproducibility of results

□ Seeded pseudo-random numbers

□ Bounds on logical number of steps and size

▪ Dynamic technique in a static context

□ Does not run the code

□ Code may be incomplete or incorrect

▪ Deliberately simple design

□ Random scheduling, no constraint solver

□ Examine more code with less sophistication

6

Abstract States

▪ Cope with unknown input

□ Command line args, user/file input etc.

▪ Uninterpreted value

□ Stands for any possible value

□ Propagates through expressions

▪ Imprecise assumptions

□ Take random branch on uninterpreted condition

□ Ignore locks, thread starts/joins on uninterpreted object

□ Do not report data races on uninterpreted addresses

7

May result in false positives (and false negatives)

Experimental Evaluation

▪ 10 C# GitHub project
by user ranking

▪ 3 C# GitHub projects,
«concurrency» tag

▪ 402 assemblies

▪ 3.4 MLOC source code

8

Project Lines of Code Assemblies

Roslyn 15.2 1,851,645 114

SignalR 2.2.2 86,574 31

Nancy 2.0.0 72,345 56

ILSpy 2.4 279,432 14

CefSharp 57.0.0 14,116 9

ReactiveUI 7.4.0 33,381 10

MsBuild
15.1.1012

397,281 20

Hangfire 1.6.14 73,986 12

Polly 5.2.0 91,363 6

NLog 4.4.11 63,381 6

Orleans 1.4.2 137,695 29

Akka.NET 1.2.2 225,744 82

Rx.NET 3.1.1 155,358 13

3,482,302 402

Experimental Results

9

Analyzed assemblies 402

Analysis time 13 min in total

Time per assembly 1.7 sec on average

Detected issues 121 races

False Positives 14 (12%)

Real issues 107

Productive issues 89

Found in Roslyn, SignalR, NLog, Rx.NET

Found Races

10

Roslyn

SignalR

and other issues…

Conclusion

▪ Concurrency checking at development time

□ Directly warn in IDE when races are programmed

□ Requires to be static, fast, and precise

▪ Full-fledged implementation for C#

□ Broad concurrency feature spectrum

□ It is the sole static race checker for modern C#

▪ Simple but experimentally effective approach

□ Applicable to other programming languages

11

Thank You for Your Attention!

▪ Contact

□ Luc Bläser, HSR Hochschule für Technik Rapperswil

□ lblaeser@hsr.ch, http://concurrency.ch

▪ Project Website

□ http://parallel-checker.com

▪ VS Marketplace

□ https://marketplace.visualstudio.com/items?itemName=L
BHSR.HSRParallelCheckerforC7VS2017

mailto:lblaeser@hsr.ch
http://concurrency.ch/
http://parallel-checker.com/
https://marketplace.visualstudio.com/items?itemName=LBHSR.HSRParallelCheckerforC7VS2017

