
A Component Language for

Structured Parallel Programming

Luc Bläser

Computer Systems Institute, ETH Zurich, Switzerland

blaeser@inf.ethz.ch

Joint Modular Languages Conference (JMLC)

Oxford, England, September 2006

The Current State: Object-Orientation

Three fundamental problems:

• References

– Arbitrary object interlinking => Unstructured dependencies

– No hierarchical composition => Objects can not encapsulate

(dynamic) structures of other objects

• Methods

– Blocking procedure calls instead of real message passing

– No arbitrarily long “state-full” client communication

• Inheritance

– Groundless compulsion of hierarchisation and classification

– Contradictory combination of polymorphism and code reuse

A New Approach

There is a better model for structured parallel programming:

The Component Language

A new programming language with

an integrated general component notion

The Component Language

Highlights:

• Hierarchical composition

• Interface connections

• Communication-based interactions

connection of dual

required/offered interfaces

encapsulated

sub-components

symmetric message communication

between parallel components

StandardHouse

Residence

ParkingSpace

Water

Electricity

Component Concept

• A component is a closed program unit at runtime that encapsulates
state and behaviour

• External dependencies only allowed via explicit interfaces

• An interface represents an external facet of a component, an
interaction point between a component and its external environment

• A component can offer own interfaces and require foreign interfaces
of other external components

• Components (runtime instances) are created from a static template.

COMPONENT StandardHouse

OFFERS Residence, ParkingPlace

REQUIRES Water, Electricity;

(* implementation *)

END StandardHouse;

INTERFACE Residence;

(* … *)

END Residence;

INTERFACE ParkingPlace; (* … *)

INTERFACE Water; (* … *)

INTERFACE Electricity; (* … *)

static template: runtime instance:

Component Instances

Multiple component instances can be created from the same template.

house1, house2: StandardHouse;

building is a component of any template, which

• offers at least Residence and ParkingPlace

• requires at most Water and Electricity

townHouse: ANY(Residence | Electricity, Water, CentralHeating)

oldHouse: ANY(Residence | Water)

Dynamic collection of component instances

• An index identifies an instance in the collection

house[number: INTEGER; street: TEXT]: StandardHouse

Possible instances:

house[12, “market street”] house[3, “main street”] …

potential StandardHouse

no StandardHouse

Declarations:

building: ANY(Residence, ParkingSpace | Water, Electricity)

Hierarchical Composition

COMPONENT StandardHouse

OFFERS Residence, ParkingSpace

REQUIRES Electricity, Water;

VARIABLE

garage: StandardGarage;

groundFloor, firstFloor: ANY(Rooms | Electricity, Water);

BEGIN

NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor)

END StandardHouse;

variables as containers

for components

StandardHouse

Residence

Standard-

Garage

garage

ParkingSpace

ParkingSpace

Floor

groundFloor
Electricity

Water

Rooms

Floor

firstFloor Electricity

Water

Rooms

Electricity

Water

fully encapsulated

sub-components

Component Networks

VARIABLE house1, house2: StandardHouse;

powerPlant: HydroelectricPowerPlant;

river1, river2: River;

BEGIN

NEW(house1); NEW(house2); NEW(powerPlant); NEW(river1); NEW(river2);

CONNECT(Water(house1), river1); CONNECT(Electricity(house1), powerPlant);

CONNECT(Water(house2), river2); CONNECT(Electricity(house2), powerPlant);

CONNECT(Water(powerPlant), river2)

Standard-

House

Electricity

Hydroelectric-

PowerPlant

River
Water

Standard-

House

Residency house1

house2

powerPlant

river2

River

Water river1

ParkingSpace

Residency

ParkingSpace

network structure exclusively

controlled by surrounding component

Dynamic Network Construction

VARIABLE

house[postalAddress: TEXT]: StandardHouse;

powerPlant: HydroelectricPowerPlant;

river[number: INTEGER]: River;

BEGIN

FOR n := 1 TO N DO NEW(river[n]) END; (* N >= 1 *)

NEW(powerPlant); CONNECT(Water(powerPlant), river[1]);

REPEAT

location := postal address of the new house;

NEW(house[location]); CONNECT(Electricity(house[location]), powerPlant);

n := number of nearest river;

CONNECT(Water(house[location]), river[n])

UNTIL no free building site available

StandardHouse

Electricity

Hydroelectric-

PowerPlant

house[“122, market street”]

River
Water

river[1]

…

River

Water

river[N]
StandardHouse

house[“3, main street”]

…

powerPlant

Residence

ParkingSpace

Residence

ParkingSpace

Communication-Based Interactions

• An interface enables communications between a component and
external instances

• A communication involves bidirectional (non-blocking) message
exchange, specified by an EBNF protocol

• A message can carry values or components as content

INTERFACE HotelService;

{

IN CheckIn(name: TEXT)

(

OUT AssignedRoom(number: INTEGER)

IN CheckOut OUT Bill

|

OUT FullyBooked

)

}

END HotelService;

repetition

Hotel

HotelService

Customer

CheckIn

Bill

alternative:

CheckOut

AssignedRoom FullyBooked

Client-Individual Communications

• A component maintains a separate “state-full” communication with
each interface client individually

• Multiple clients can use the same offered interface of a component
in parallel

HotelHotelService

Customer

Customer

…

separate

communication

channel

COMPONENT Customer

REQUIRES HotelService;

BEGIN

HotelService!CheckIn;

IF HotelService?AssignedRoom THEN

HotelService?AssignedRoom(n) (* … *)

ELSE HotelService?FullyBooked

END

END Customer;

COMPONENT Hotel

OFFERS HotelService;

IMPLEMENTATION HotelService;

BEGIN

WHILE ?CheckIn DO

?CheckIn(name); (* … *)

END

END HotelService;

END Hotel;

separate service

process per client

send

receive

receive guard

Language Implementation

• Virtual machine

– Intermediate code is generated by a front-end compiler

– A back-end compiler in the VM generates direct machine code

– System is currently based on ETH Bluebottle OS

• Structures automatically organised in heap behind the scenes

– Automatic garbage collection is in fact no longer needed

– Communication protocol is dynamically monitored

• Concurrency support by underlying Bluebottle / AOS

– Direct context switches on wait dependencies

– Still much potential for concurrency improvement in OS

Test application Component System Active C# WinAOS Native Bluebottle

Producer-consumer 1.6 4.4 10 1.6

Small city simulation 2.9 360 24 2.7

Large city simulation 30 out of memory out of memory 28

Execution time in seconds:

5000 components, 3000

processes

Windows threads

analogous

object-oriented

applications

< 10% overhead compared to

classical object-orientation

Conclusion

• A substantially new approach towards more structured

construction of parallel software

– Pointer-free structuring

– Guaranteed hierarchical encapsulation

– Concurrency with autonomously running components

– General state-full interactions

– Flexible polymorphism

• Language report and system download

– http://www.jg.inf.ethz.ch/components

– Don’t hesitate to ask for a personal demonstration of the system

Live Demonstration

1. Producer-Consumer

2. Digital Library

3. City Simulation

Simulation

BoundedBuffer

DataAcceptor

Producer Consumer

DataSource

DigitalLibrary

Book Book

…

book["0-471-94148-4"]book["0-13-062296-6"]
Library

Customer

Customer

Standard-

House

Electricity

Hydroelectric-

PowerPlant

River
Water

house[…]

powerPlant

river[…]

Residence

ParkingSpace

…

