
Concurrency in Software Designs:
How to Avoid Nasty Surprises?

Prof. Dr. Luc Bläser
Hochschule für Technik Rapperswil

Varian Medical Systems,
Baden, 31 Oct 2013

1

Concurrency Becomes Inevitable

 Imposed by Designs

□ Making GUIs responsive

□ External libraries

□ Distributed systems

□ Some language features

 Accelerating Performance

□ Clock speed at ceiling

□ Parallelizing on multi-cores

□ Must program this explicitly

□ “The free lunch is over” – H. Sutter

2

So Much Can Go Wrong

 New Sorts of Potential Errors

□ Race Conditions

□ Deadlocks & Livelocks

□ Starvations

 Non-Deterministic Errors

□ Occur Sporadically

□ Hard to find

□ Hard to test

3

Therac-25 RT Linac

Patients died by overradiation
Cause: Race condition

Should be alarmed
- “No clue why this test failed. We reran it many times and it stays green now.”
- “The software hangs on very rare occasions. Just restart it; nothing harmful.”

N. G. Leveson, C. S. Turner, An Investigation of the Therac-25 Accidents,
IEEE Computer, Volume 26, Issue 7 (Jul 1993), pp. 18-41

Talk Outline

 Concurrency Essentials

□ Multi-Threading in a Nutshell

□ Safety & Liveness Criteria

 Structuring Concurrency

□ Design in Architectures

□ Scenarios, patterns & pitfalls

• Producer / Consumer

• Responsive UI / logic

• Algorithmic parallelization

 Conclusions

4

Sources of Concurrency in .NET

 Explicit Threads

 TPL Tasks (Thread Pools)

 Parallel LINQ

 Finalizers, “C# Destructors”

 Web services, sockets

 Background-Worker

 Asynchronous calls

 async/await

 Timers

 External calls/callbacks

 Across Processes (via DB, files, network etc.)

5

Multi-threading
underneath

Concurrent Programming Model

 Threads operating on
passive objects

□ Via direct or indirect
method calls

□ Parallel or arbitrary
interleaving

□ By default, uncontrolled

□ Need to synchronize
explicitly

 Better models exist

□ Actors, (STM)

6

Threads

Objects
References

Shared!

Predestinates of Race Conditions

7

int Next() {
return counter++;

}

foreach (T item in threadSafeCollection) {
…

}

void Swap() {
t = y; y = x; x = t;

}

while (safeBuffer.Size > 0) {
safeBuffer.RemoveFirst();

}
if (weakReference.IsAlive) {
weakReference.Value.Op();

}

if (!loaded) {
loaded = true;
Internalize();

}

Race Condition

 Insufficiently synchronized accesses on shared
resources

□ Erroneous or undefined behavior

□ Depends on timing/interleaving of concurrent execution

 Low level: Data races

□ Concurrent accesses without sync

□ On same variable or array element

□ Read-write, write-read, write-write

 High level: Unsynchronized sequences

□ Critical (atomic) sections not ensured

8

Synchronization Abstractions in .NET

 Monitor (aka C# lock with Wait & Pulse)

 Reader-writer lock

 Concurrent collections

 Primitives: Semaphore, Barrier, Mutex,
CountDownEvent, wait handles, …

 Thread/Task Joins

 Memory level: Interlocked, volatile, barriers/fences

9

Fixing Races, Causing Deadlocks

10

class Repository { …
void CopyTo(Repository target) {
lock(this) {

// get
target.Add(content);

}
}

public void Add(T content) {
lock(this) {

// add
}

}
}

Thread T1
a.CopyTo(b);

Thread T2
b.CopyTo(a);

lock a
lock b

lock b
lock a

Nested lock

T1 locks a
T2 locks b
T1 wants b
T2 wants a

Deadlock

Deadlock

 Threads wait for each to
release a resource such
that none can proceed

□ Nested locks

□ Cyclic wait dependencies

□ (Mutual blocking
without timeouts)

 Livelock = Deadlock
consuming processor
while waiting

11

T2T1

awaits
lock

locked
by

awaits
lock

locked
by

a

b

while (!Wait(timeout)) { }

Starvation: Not Much Better

 Fairness problem

□ A thread may never get the chance to access a resource

□ Others could continuously overrun the waiting thread

 Frequent candidates

□ Timeout and retry

□ Thread priorities

□ Optimistic concurrency control

□ Self-designed read/write locks

□ .NET sync primitives do
not guarantee strict fairness

12

a.Lock();
while (!b.TryLock()) {
a.Unlock();
// let others continue
a.Lock();

}

Safety & Liveness Conditions

 Mutual exclusion

□ Critical sections on shared resources are properly
synchronized

 No deadlocks

□ Threads cannot lock each other for indefintie time

 No starvation

□ Thread waiting for a condition should proceed after some
time if the condition is sufficiently often fulfilled

13

Safety

Testing Concurrency Bugs?

 Errors are time-dependent / non-determinstic

□ May show up sporadically and extremely seldom

 Multi-thread testing has limitation

□ Would need to test all relevant / possible interleavings

□ Watch sporadic failures!

 Other approaches needed

□ Static checkers?

□ Analytical approach

14

Concurrency Checkers

 Static analysis is an unfulfillable wish

□ Exponential state explosion

• Eventually as hard as «halting problems»

□ Good results with some model and dynamic checkers

• MSR Chess for .NET (no longer maintained)

• Intel Inspector XE (also for .NET)

• Java Pathfinder and others

• Own new research project…

 Most analysis tools only detect primitive style issues

□ VS Code Analysis, FxCop, Resharper

□ Detects empty lock-blocks, locking null etc.

15

Need for Analytical Approach

 Our problem: Threads can run arbitrarily on objects

□ Which threads may access which objects?

□ Which objects must be thread-safe and which not?

□ Exist potentially cyclic wait dependencies?

16

Concurrency Model in SW Architecture

1. Identify active instances

2. Specify interactions

3. Define synchronization

4. Reason about correctness

17

1. Identify Active Instances

 Threads, parallel tasks etc.

□ Self-defined

• Objects running partially or fully decoupled activities

□ Externally imposed

• Single UI thread, service worker threads, …

18

<<thread>>
StreamReader

Active class
r : StreamReader

Active object
(thread instance)

May also model conceptually active instances (running inner threads)

Concurrent Class Diagram

19

AnalysisUI StatView

StreamReaderDataAnalyzer DataBuffer Stream

AnalysisStats

Record

Indirectly active
(UI thread)

Thread-Safe

Confined

*

*

2. Specify Interactions

20

r : StreamReader b : DataBuffer

b.put()

active object passive object

synchronous call

asynchronous call

beginDispatch()

w : WorkerThread : DispatchQueue

: Record

: StatView

Concurrent Communication Diagram

21

: AnalysisUI : StatView

: StreamReader: DataAnalyzer b: DataBuffer : Stream

: AnalysisStats

: Record: Record : Record

b.put()b.get() read()update()

beginDispatch()

3. Define Synchronization

22

DataBuffer

put() { guarded }
get() { guarded }

thread-safe

Record

get() { sequential }
set() { sequential }

not thread-
safe

Synchronization must
be externally realized

(confinement)

Synchronization is
internally realized
(exclusive locks)

Math

abs() { concurrent }
sign() { concurrent }

thread-safe

Parallel invocation is
safe

(no / shared locks)

When No Sync is Needed

 Immutable state/objects

□ Synchronization/fence after construction needed

 Confined objects

□ Only used by 1 thread at a time

□ Local to one thread only

□ Encapsulated inside thread-safe container

□ Moved across threads (sync on moving)

□ Threads operate on disjoint parts

23

4. Reason About Correctness

 Race condition

Is Synchronization or confinement defined per class?

Are critical sections defined and protected?

 Deadlocks

For nested locks: Is a linear order of locking defined?

No read-write lock upgrade (unless supported)?

 Starvation

Fair synchronization primitives (if important)?

No priority inversion with multiple thread priorities?

24

Deadlock Prevention

 Introduce linear order on resources

□ Only acquire locks on resources in ascending order

 More coarse grained lock

□ If ordering is not possible (too dynamic object structures)

25

Item
[1]

Item
[2]

Item
[3]

Item
[4]

Lock [1] Lock [3] Lock [4]

Item Item Item Item

Holder
lock holder;
access items

Architectural Deadlock Prevention

 Hierarchy of components /
modules
□ Lock per component
□ Component may comprise

multiple objects
□ Inside component, only use

the corresponding lock

 Call only from upper to
lower modules
□ Partial order on components
□ Nested locks only according

in this order

 Up-calls are deadlock-prone
□ Per events, delegates,

lambdas

26

Business
Logic 1

Data Model

Business
Logic 2

Persistence
Mapper

Bulk Cache

UI
Service

Implementation

up-call

Archetypical Scenarios & Patterns

 Loosely coupled activities

□ Producer-consumer

 Responsive UI/logic

□ Asynchronous execution

 Algorithmic parallelization

□ Divide & parallel conquer

27

Producer-Consumer

 Faster than sequential processing

□ Partial decoupling of processing steps

• Wait only when buffer is full or empty

□ Serving IO channels, delayed logging etc.

 Buffer must be thread-safe

□ Concurrent blocking collection, monitor sync etc.

28

Bounded
Buffer

Producer Consumer

Concurrent Pipelines

 Faster than sequential series processing

 Do not use thread pools for this

□ Unsuited for mutual task dependencies

□ Deadlocks for fixed-sized thread pools

□ Thread injection (worker threads increase after delay)

29

Buffer

Process
step 0

...

Process
step 1

Buffer

Process
step N

Monitor: Know the Pitfalls!

30

class BoundedBuffer<T> {
…
public void Put(T x) {
lock(this) {

while(queue.Count == limit) { Monitor.Wait(this); }
queue.Enqueue(x);
Monitor.PulseAll(this); // signal non-free

}
}
public T Get() {
lock(this) {

while(queue.Count == 0) { Monitor.Wait(this); }
T x = queue.Dequeue();
Monitor.PulseAll(this); // signal non-full
return x;

}
}

}

Monitor Pitfalls

 Recheck wait conditions

□ Between pulse and monitor reentrance, other threads may
enter before and invalidate the condition

□ while(!condition) {
Monitor.Wait(syncNode);

}

 PulseAll() in case of multiple wait conditions

□ E.g. non-full, non-empty
□ Monitor.PulseAll(syncNode)

31

Responsive UI/Logic

 UI is single-threaded

□ Keep responsive by outsourcing blocking/computing-
intense tasks to other threads

□ Only UI thread must access GUI controls

 E.g. C# 5 async/await model

32

public async Task<int> LongOperationAsync() { … }

…
Task<int> task = LongOperationAsync();
// other work
int result = await task;
// continue

Caution: Async/Await Execution Model

 Async methods are half-synchronous/half-
asynchronous

□ Caller executes methods synchronously until a blocking
await occurs

□ Afterwards method runs asynchronouly

async Task<int> GetSiteLengthAsync(string url) {
HttpClient client = new HttpClient();
Task<string> task = client.GetStringAsync(url);
string site1 = await task;
return site1.Length;

}

Synchronous
(caller thread)

Asynchronous
(potentially other
thread)

33

 Task thread executes part after await

Case 1: No Synchronization Context

task end

TPL
Thread

async Task OpAsync() {
…
…
Task t = OtherAsync();

await t;
…
…

}

Task t

call

return

Caller
Thread

task start

Continuation

34

 E.g. GUI thread as caller: dispatch

Case 2: With Synchronization Context

GUI Thread

caller

return

task end

TPL
Thread

async Task OpAsync() {
…
…
Task t = OtherAsync();

await t;
…
…

}

Task t

Dispatch of the continuation

task start

35

Various Async/Await Pitfalls

1. Async methods are not per se asynchronous

2. Thread switch inside methods

3. Quasi-parallelism in UI event handler

4. Race conditions remain possible

5. UI deadlocks because of wrong task access

6. Exceptions are ignored for «fire-and-forget»

7. Premature termination of «fire and forget»

36

Divide & Parallel Conquer

 Classical parallelization for acceleration

 Thread pool is the way to go

37

void MergeSort(l, r) {
long m = (l + r)/2;
MergeSort(l, m);
MergeSort(m, r);
Merge(l, m, r);

}

Parallel.Invoke(
() => MergeSort(l, m),
() => MergeSort(m, r)

);

void Convert(IList<File> files) {
foreach (File f in files) {
Convert(f);

}
}

Parallel.Foreach(files,
f => Convert(f)

);

Task Parallelization in the Cloud

 Program parallel tasks in .NET

 Send to cloud for execution

 Cloud side has e.g. MS HPC cluster

.NET Program

Parallel
Tasks

.NET Runtime

Runtime Extension

Task Parallelization
Service

HPC Cluster

Node

Node

Node

Node

var distribution =
new Distribution("tasks.concurrency.ch", …);

…
distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = Factorize(inputs[i]);

});

private long Factorize(long number) {
for (long k = 2; k * k <= number; k++) {
if (number % k == 0) { return k; }

}
return number;

}

http://concurrency.ch/Projects/TaskParallelism

38

http://concurrency.ch/Projects/TaskParallelism

Conclusions

 Concurrency becomes increasingly important

□ Programmers need to strengthen their skills

 Danger of non-deterministic errors

□ Clear concurrency design for SW architecture is vital

 Various pitfalls lurk in maintaining technologies

□ Awareness is required as long as tools do not help here

39

Thanks for Your Attention!

 .NET Concurrency Courses

□ http://concurrency.ch/Training

 Consulting & Reviews

 Engineering & Research Projects

 Contact

40

Prof. Dr. Luc Bläser
HSR Hochschule für Technik Rapperswil
IFS Institut für Software
lblaeser@hsr.ch
http://concurrency.ch, http://ifs.hsr.ch

http://concurrency.ch/Training
mailto:lblaeser@hsr.ch
http://concurrency.ch/
http://concurrency.ch/

Institut für Software (IFS)

41

Partners

Academic collaborators

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=gkeuD_8LBU3XDM&tbnid=Me9rjbv7IFTAzM:&ved=0CAUQjRw&url=http://electronics4you.cc/agenda_hsr.html&ei=23A8UuyDDIyMswaMjYHQAQ&bvm=bv.52434380,d.Yms&psig=AFQjCNHcHx7QkUQmkgKs7ASojUyplHAJmQ&ust=1379779142844788
http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=gkeuD_8LBU3XDM&tbnid=Me9rjbv7IFTAzM:&ved=0CAUQjRw&url=http://electronics4you.cc/agenda_hsr.html&ei=23A8UuyDDIyMswaMjYHQAQ&bvm=bv.52434380,d.Yms&psig=AFQjCNHcHx7QkUQmkgKs7ASojUyplHAJmQ&ust=1379779142844788

